
Forte
Release 0.2.3

Forte Developers

Jan 16, 2023

CONTENTS:

1 Overview 3
1.1 Capabilities . 3
1.2 Dependencies . 3

2 Tutorials 5
2.1 Compiling and running Forte . 5
2.2 Running Forte computations . 10
2.3 Specifying a wave function in Forte . 15
2.4 Specifying calculations of multiple states . 20
2.5 Examples of advanced Forte computations . 21
2.6 Selecting two-electron integral types . 28
2.7 Reading integrals in a spin orbital basis . 30

3 HOWTOs 35
3.1 Full configuration interaction . 35
3.2 ACI: Adaptive Configuration Interaction . 35
3.3 MCSCF: Multi-Configuration Self-Consistent Field . 40
3.4 Driven Similarity Renormalization Group . 47
3.5 Active Space Embedding Theory . 78
3.6 Atomic Valence Active Space (AVAS) . 79
3.7 Plotting MOs . 87
3.8 Forte Python API Tutorial (NEW) . 88

4 Programmer’s Manual 91
4.1 Writing Forte’s documentation . 91
4.2 Psi4 . 92

5 Forte’s Python API 93
5.1 Molecule . 93
5.2 Basis set . 93
5.3 Molecular model . 93
5.4 Results . 93
5.5 Solver class . 93
5.6 Hartree-Fock solver . 93
5.7 Callback handler . 93

6 List of Forte options 95

i

ii

Forte, Release 0.2.3

Forte is an open-source suite of quantum chemistry methods for strongly correlated electrons.

CONTENTS: 1

Forte, Release 0.2.3

2 CONTENTS:

CHAPTER

ONE

OVERVIEW

Forte is an open-source suite of state-of-the-art quantum chemistry methods applicable to chemical systems with
strongly correlated electrons. The code is written as a plugin to Psi4 in C++ with C++17 functionality, and it takes
advantage of shared memory parallelism throughout.

1.1 Capabilities

In general, Forte is composed of two types of methods: 1. Active space solvers 1. Dynamical correlation solvers

Active space solvers Abbreviation
Full/complete active space configuration interaction FCI/CASCI
Adaptive configuration interaction ACI
Projector configuration interaction PCI

Dynamical correlation solvers Abbreviation
Driven similarity renormalization group DSRG
Second-order DSRG multireference perturbation theory DSRG-MRPT2
Third-order DSRG multireference perturbation theory DSRG-MRPT3
Multireference DSRG with singles and doubles MR-LDSRG(2)

Note that the active space solvers, notably FCI, ACI, and PCI can operate within the full orbital basis defined by the
user-selected basis set. In this case, these methods also recover dynamical correlation.

1.2 Dependencies

In order to run Forte, the following are required: - A Recent version of Psi4 - CMake version 3.0 or higher - The tensor
library Ambit

3

Forte, Release 0.2.3

4 Chapter 1. Overview

CHAPTER

TWO

TUTORIALS

2.1 Compiling and running Forte

2.1.1 Download and compilation of Forte

Prior to the compilation of Forte you must first check to make sure you have the following:

1. CMake version 3.0 or higher

2. An updated version of Psi4 (obtain it from https://github.com/psi4/psi4)

3. The tensor library Ambit (obtain it from https://github.com/jturney/ambit). Note that ambit is included in the
conda distribution of psi4. So if you already have the latest version of psi4 installed there is no need to compile
ambit.

Once you have the current versions of Psi4, CMake, and Ambit, follow the following instructions to install Forte.

Download Forte

1. Open a terminal and change the current working directory to the location where you want to clone the Forte
directory. Let’s assume this is the folder src.

2. Clone Forte from GitHub by pasting the following command:

git clone git@github.com:evangelistalab/forte.git

The repository will be cloned in the folder src/forte

1. Compilation via setup.py (recommended)

The most convenient way to compile forte is using the setup.py script. To compile Forte do the following:

1. From the src directory change to the forte directory src/forte

2. Tell setup.py where to find ambit, which can be done by creating the src/forte/setup.cfg file and adding
the following lines

[CMakeBuild]
ambitpath=<ambit install dir>

or alternatively by setting the environmental variable AMBITDIR to point to the ambit install directory (note: there is
no need to append share/cmake/ambit)

5

https://github.com/psi4/psi4
https://github.com/jturney/ambit

Forte, Release 0.2.3

export AMBITPATH=<ambit install dir>

3. Compile forte by calling

python setup.py develop

or for Debug mode

python setup.py build_ext --debug develop

This procedure will register forte within pip and you should be able to see forte listed just by calling

pip list

You can test that the path to Forte is set correctly by running python and importing forte:

import forte

2. Compilation via CMake

Forte may also be compiled by directly invoking CMake by following these instructions:

1. Run psi4 in the Forte folder

psi4 --plugin-compile

Psi4 will generate a CMake command for building Forte that looks like: cmake -C /usr/local/psi4/stage/usr/
local/psi4/share/cmake/psi4/psi4PluginCache.cmake -DCMAKE_PREFIX_PATH=/usr/local/psi4/
stage/usr/local/psi4 .

2. Run the cmake command generated in 1. appending the location of Ambit’s cmake files (via the -Dambit_DIR
option):

cmake -C /usr/local/psi4/stage/usr/local/psi4/share/cmake/psi4/psi4PluginCache.cmake
-DCMAKE_PREFIX_PATH=/usr/local/psi4/stage/usr/local/psi4 .
-Dambit_DIR=<ambit-bin-dir>/share/cmake/ambit

3. Run make

make

Setting up the PYTHONPATH

If Forte is compiled with CMake, you will need to specify PYTHONPATH environment variable to make sure that it
can be imported in python. Assuming that you cloned Forte from the folder src then you will have a folder named
src/forte. Your PYTHONPATH should then include src/forte

in bash
export PYTHONPATH=<homedir>/src/forte:$PYTHONPATH

This allows Forte to be imported correctly since the main __init__.py file for Forte is found at src/forte/forte/
__init__.py

6 Chapter 2. Tutorials

Forte, Release 0.2.3

CMake script

The following script automates the Forte compilation process

#! /bin/tcsh

Modify the following four parameters
set ambit_dir = /Users/fevange/Bin/ambit-Release/share/cmake/ambit/ # <- location of␣
→˓ambit
set srcdir = /Users/fevange/Source/forte # <- location of forte source
set build_type = Release # <- Release, Release, or RelWithDebInfo

Run cmake
cd $srcdir

set cmake_psi4 = `psi4 --plugin-compile`

$cmake_psi4 \
-Dambit_DIR=$ambit_dir \ # remove this line if ambit is installed via conda
-DCMAKE_BUILD_TYPE=$build_type \
-DMAX_DET_ORB=128 \
-DPYTHON_EXECUTABLE=/opt/anaconda3/bin/python \
-DENABLE_ForteTests=TRUE \

make -j`getconf _NPROCESSORS_ONLN`

Advanced compilation options

Number of threads used to compile Forte

To speed up compilation of Forte specify the number of threads to use for compilation. This can be done in the setup.
cfg file via

[CMakeBuild]
nprocs=<number of threads>

or when using CMake, compile Forte with the option -jn, for example, to compile with four threads

make -j4

Add configuration and build options

When using setup.py you can specify the CMAKE_CONFIG_OPTIONS and CMAKE_BUILD_OPTIONS passed internally
to CMake in setup.cfg

[CMakeBuild]
cmake_config_options=...
cmake_build_options=...

These are convenient if you want to specify a different compiler from the one automatically detected by CMake.

2.1. Compiling and running Forte 7

Forte, Release 0.2.3

Maximum number of orbitals in the ``Determinant`` class

By default, Forte is compiled assuming that the maximum number of orbitals that can be handled by codes that use the
Determinant class is 64. To change this value modify the setup.cfg file to include

[CMakeBuild]
max_det_orb=<a multiple of 64>

or add the option

-DMAX_DET_ORB=<a multiple of 64>

if compiling with CMake.

Enabling code coverage

To enable compilation with code coverage activated, set the option enable_codecov to ON in the setup.cfg file tcsh
[CMakeBuild] enable_codecov=ON or add the option tcsh -DENABLE_CODECOV=ON if compiling with CMake.

Compilation via setup.py (recommended)

The most convenient way to compile forte is using the setup.py script. To compile Forte do the following:

1. Tell setup.py where to find ambit, which can be done either by setting the environmental variable AMBITDIR
to point to the ambit install directory (note: there is no need to append share/cmake/ambit)

export AMBITPATH=<ambit install dir>

or by modifying the <fortedir>/setup.cfg file to include

[CMakeBuild]
ambitpath=<ambit install dir>

2. Compile forte by calling in <fortedir>

python setup.py develop

or for Debug mode

fortedir> python setup.py build_ext --debug develop

This procedure will register forte within pip and you should be able to see forte listed just by calling

pip list

8 Chapter 2. Tutorials

Forte, Release 0.2.3

Compilation via CMake

Forte may also be compiled by directly invoking CMake by following these instructions:

1. Run psi4 in the Forte folder

psi4 --plugin-compile

Psi4 will generate a CMake command for building Forte that looks like: cmake -C /usr/local/psi4/stage/usr/
local/psi4/share/cmake/psi4/psi4PluginCache.cmake -DCMAKE_PREFIX_PATH=/usr/local/psi4/
stage/usr/local/psi4 .

2. Run the cmake command generated in 1. appending the location of Ambit’s cmake files (via the -Dambit_DIR
option):

cmake -C /usr/local/psi4/stage/usr/local/psi4/share/cmake/psi4/psi4PluginCache.cmake -
→˓DCMAKE_PREFIX_PATH=/usr/local/psi4/stage/usr/local/psi4 . -Dambit_DIR=<ambit-bin-dir>/
→˓share/cmake/ambit

3. Run make

make

The following script automates steps 1 and 2 of the forte compilation process

#! /bin/tcsh

Modify the following four parameters
set ambit_dir = /Users/fevange/Bin/ambit-Release/share/cmake/ambit/ # <- location of␣
→˓ambit
set srcdir = /Users/fevange/Source/forte # <- location of forte source
set build_type = Release # <- Release, Release, or RelWithDebInfo

Run cmake
cd $srcdir

set cmake_psi4 = `psi4 --plugin-compile`

$cmake_psi4 \
-Dambit_DIR=$ambit_dir \ # remove this line if ambit is installed via conda
-DCMAKE_BUILD_TYPE=$build_type \
-DMAX_DET_ORB=128 \
-DPYTHON_EXECUTABLE=/opt/anaconda3/bin/python \
-DENABLE_ForteTests=TRUE \

2.1. Compiling and running Forte 9

Forte, Release 0.2.3

Advanced compilation options

• Maximum number of orbitals in the Determinant class. By default, Forte is compiled assuming that the
maximum number of orbitals that can be handled by codes that use the Determinant class is 64. To change this
value modify the <fortedir>/setup.cfg file to include

[CMakeBuild]
max_det_orb=<a multiple of 64>

or add the option

-DMAX_DET_ORB=<a multiple of 64>

if compiling with CMake.

• Enabling code coverage. To enable compilation with code coverage activated, set the option enable_codecov
to ON in the <fortedir>/setup.cfg file

[CMakeBuild]
enable_codecov=ON

or add the option

-DENABLE_CODECOV=ON

if compiling with CMake.

2.2 Running Forte computations

In this section, we will look at the basics of running computations in Forte.

There are two ways one can run Forte:

1. Using the plugin interface in Psi4.

2. Using Forte’s python API.

2.2.1 Running a FCI computation using the plugin interface

Let’s start by looking at how one can run Forte as a plugin to Psi4. The following text input (see examples/plugin/
01_fci/input.dat) can be used to run a FCI computation on the lithium dimer:

examples/plugin/01_fci/input.dat

import forte

molecule {
0 1
Li 0.0 0.0 0.0
Li 0.0 0.0 3.0
units bohr
}

set {
(continues on next page)

10 Chapter 2. Tutorials

Forte, Release 0.2.3

(continued from previous page)

basis sto-3g
scf_type pk
e_convergence 10

}

set forte {
active_space_solver fci

}

energy('forte')

To understand the structure of the input file, we will go over each section of this input.

• The file start with the import forte command, which loads the Forte module.

• The next section specifies the molecular structure and the charge/multiplicity of the molecule. This section
accepts inputs as specified in Psi4’s Molecule and Geometry Specification documentation, and accepts both
Cartesian and Z-matrix coordinates

molecule {
0 1
Li 0.0 0.0 0.0
Li 0.0 0.0 3.0
units bohr
}

• The options block that follows passes options to Psi4. Here we set the basis (basis sto-3g), the type of SCF
integral algorithm (scf_type pk, which uses conventional integrals), and the energy convergence threshold
(e_convergence 10, equivalent to 10−10 𝐸h)

set {
basis sto-3g
scf_type pk
e_convergence 10

}

• The next section sets options specific to Forte. In a typical Forte job the user needs to specify two objects:

– An active space solver, used to treat static correlation effects. The active space solver finds a solution to
the Schrödinger equation in the subset of active orbitals.

– A dynamical correlation solver, used to add dynamical electron correlation corrections on top of a wave
function defined in the active space. To run a FCI computation, we only need to specify the active space
solver, which is done by setting the option active_space_solver:

set forte {
active_space_solver fci

}

• The last line of the input calls the Psi4 energy method specifing that we want to run the forte module

energy('forte')

To run this computation we invoke psi4 on the command line

2.2. Running Forte computations 11

https://psicode.org/psi4manual/master/psithonmol.html

Forte, Release 0.2.3

>>>psi4 input.dat

This will run psi4 and produce the output file output.dat, a copy of which is available in the file examples/plugin/
01_fci/output.dat. From this output, we can read the CI coefficient of the most important determinants written in
occupation number representation

220 0 0 200 0 0 0.89740847 <-- coefficient
200 0 0 200 0 2 -0.29206218
200 0 0 200 2 0 -0.29206218
200 0 0 220 0 0 -0.14391931

and a summary of the total energy of a state and the expectation value of the spin squared operator (𝑆2)

Multi.(2ms) Irrep. No. Energy <S^2>
--

1 (0) Ag 0 -14.595808852754 -0.000000
--

2.2.2 Running a FCI computation using the python API

The following input runs the same FCI computation discussed above using the python API:

examples/api/01_fci.py

import psi4
import forte

psi4.geometry("""
0 1
Li 0.0 0.0 0.0
Li 0.0 0.0 3.0
units bohr
""")

psi4.set_options({
'basis': 'sto-3g', # <-- set the basis set
'scf_type': 'pk', # <-- request conventional two-electron␣

→˓integrals
'e_convergence': 10, # <-- set the energy convergence
'forte__active_space_solver' : 'fci'} # <-- specify the reference
)

psi4.energy('forte')

This python file mirrors the psi4 input file.

• The file start with both the import psi4 and import forte commands, to load both the psi4 and Forte mod-
ules.

• The next command creates a psi4 Molecule object calling the function psi4.geometry. This object is stored
in a default memory location and automatically used by psi4

12 Chapter 2. Tutorials

Forte, Release 0.2.3

psi4.geometry("""
0 1
Li 0.0 0.0 0.0
Li 0.0 0.0 3.0
units bohr
""")

• The options block that follows passes options to both Psi4 and Forte. Here we pass options as a python dictionary,
prefixing options that are specific to Forte with forte__:

psi4.set_options({
'basis': 'sto-3g', # <-- set the basis set
'scf_type': 'pk', # <-- request conventional two-electron␣

→˓integrals
'e_convergence': 10, # <-- set the energy convergence
'forte__active_space_solver' : 'fci'} # <-- specify the active space solver
)

• The last line of the python code calls the Psi4 energy method specifing that we want to run the forte module

psi4.energy('forte')

This computation is identical to the previous one and produces the exact same output (see examples/plugin/01_fci.
out).

2.2.3 Passing options in Forte: psi4 interface vs. dictionaries (new)

In the previous sections, calcultation options were passed to Forte through psi4. An alternative way to pass options is
illustrated in the following example (using the python API):

examples/api/07_options_passing.py
"""Example of passing options as a dictionary in an energy call"""

import psi4
import forte

psi4.geometry("""
0 3
C
H 1 1.085
H 1 1.085 2 135.5
""")

psi4.set_options({
'basis': 'DZ',
'scf_type': 'pk',
'e_convergence': 12,
'reference': 'rohf',

})

forte_options = {
'active_space_solver': 'fci',

(continues on next page)

2.2. Running Forte computations 13

Forte, Release 0.2.3

(continued from previous page)

'restricted_docc': [1, 0, 0, 0],
'active': [3, 0, 2, 2],
'multiplicity': 3,
'root_sym': 2,

}

efci1 = psi4.energy('forte', forte_options=forte_options)

forte_options['multiplicity'] = 1
forte_options['root_sym'] = 0
forte_options['nroot'] = 2
forte_options['root'] = 1

efci2 = psi4.energy('forte', forte_options=forte_options)

• Note how in this file we create a python dictionary (forte_options) and pass it to the energy function as the
parameter forte_options.

• Passing options via a dictionary takes priority over passing options via psi4. This means that any option previ-
ously passed via psi4 is ignored.

• This way of passing options is safer than the one based on psi4 because, unless the user intentionally passes the
same dictionary in the energy call, there is no memory effect where previously defined options have an effect on
all subsequent calls to energy.

• Note how later in the file we call energy again but this time we modify the options directly by modifying the
dictionary

forte_options['multiplicity'] = 1
forte_options['root_sym'] = 0
forte_options['nroot'] = 2
forte_options['root'] = 1

Here we change the multiplicity and symmetry of the target state, and compute two roots, reporting the energy of the
second one.

This computation is identical to the previous one and produces the exact same output (see examples/plugin/01_fci.
out).

2.2.4 Test cases and Jupyter Tutorials

• Test cases. Forte provides test cases for most of all methods implemented. This is a good place to start if you
are new to Forte. Test cases based on Psi4’s plugin interface can be found in the <fortedir>/tests/methods
folder. Test cases based on Forte’s python API can be found in the <fortedir>/tests/pytest folder.

• Jupyter Tutorials for Forte’s Python API. Forte is designed as a C++ library with a lot of the classes and
functionality exposed in Python via the pybind11 library. Tutorials on how to use Forte’s API can be found
here.

14 Chapter 2. Tutorials

https://github.com/evangelistalab/forte/tree/master/tutorials%3E

Forte, Release 0.2.3

2.3 Specifying a wave function in Forte

To uniquely identify an electronic state, Forte needs to know the total number of electrons (𝑁), the number of alpha
and beta electrons (𝑁𝛼/𝑁𝛽), the spin state, and the symmetry of the state(s) computed. These quantities are specified
via various options, as detailed below.

2.3.1 Charge and spin multiplicity

The molecular charge (𝑄), is defined as the sum of the charge of the nuclei (𝑍𝐴) minus the number of electrons

𝑄 =
∑︁
𝐴

𝑍𝐴 −𝑁el.

Recall that, in the absence of an external field, an electronic state is an eigenfunction of the spin squared operator 𝑆2

and the z component of the spin operator 𝑆𝑧 . The eigenvalues of these two operators are related to the spin quantum
numbers 𝑆 and 𝑀𝑆 via (in atomic units)

𝑆2|𝑆,𝑀𝑆⟩ = 𝑆(𝑆 + 1)|𝑆,𝑀𝑆⟩,

and

𝑆𝑧|𝑆,𝑀𝑆⟩ = 𝑀𝑆 |𝑆,𝑀𝑆⟩, 𝑀𝑆 = −𝑆,−𝑆 + 1, . . . , 𝑆 − 1, 𝑆

The spin multiplicity is defined as

MULTIPLICITY = 2𝑆 + 1,

and this quantity is used instead of 𝑆 to specify which spin state is being computed.

Unless otherwise specified, when a psi4 Molecule object is created, the molecular charge is assumed to be 0, and the
spin multiplicity is assumed to be 1 (singlet state). These quantities may specified by the user in the first line of the
geometry input:

molecule {
0 1 # <-- charge and multiplicity (neutral,singlet)
...

}

molecule {
1 4 # <-- (cation,quartet)
...

}

The charge and multiplicity specified in the molecule section of the input (and read by psi4) are stored in the
Wavefunction object generated by psi4 and are read by Forte, where they are used in the rest of the computation.

To select a different charge and multiplicity in Forte, it is possible to specify the options CHARGE and MULTIPLICITY
in the forte input section. These options override the value passed in via the Wavefunction object (and the
Wavefunction object takes priority over the values specified in the molecular geometry input).

2.3. Specifying a wave function in Forte 15

Forte, Release 0.2.3

2.3.2 Specifying the z component of spin (𝑀𝑆)

Most quantum chemistry codes take as an input the spin multiplicity and then select the highest possible value of 𝑀𝑆

compatible with 𝑆, that is, 𝑀𝑆 = 𝑆. Note that 𝑀𝑆 is connected to the number of alpha/beta electrons via

𝑀𝑆 =
1

2
(𝑁𝛼 −𝑁𝛽)

and, therfore, together with the total number of electrons, it determines the value of 𝑁𝛼 and 𝑁𝛽 .

In Forte, modules will select either the lowest absolute or highest value of 𝑀𝑆 compatible with 𝑆 (as specified via
MULTIPLICITY), depending on internal details of the implementation. For example, if MULTIPLICITY = 3 and 𝑀𝑆

is not specified, the FCI code in Forte will assume that the user is interested in the solution with 𝑀𝑆 = 0.

However, Forte also allows the user to select electronic states with a well defined value of 𝑀𝑆 . This quantity may be
specified via the option MS. This option is of type double, so it should be specified as 0.0, -1.5, etc.

For example, the following input requests the 𝑀𝑆 = 0 component of a triplet state:

triplet, m_s = 0
set forte {

multiplicity = 3
ms = 0.0

}

while the following gives the 𝑀𝑆 = −1 component:

triplet, m_s = 1
set forte {

multiplicity = 3
ms = -1.0

}

2.3.3 Point group symmetry

Forte takes advantage of symmetry, so it important to specify both the symmetry of the target electronic state and the
orbital spaces that define a computation (see below). Forte supports only Abelian groups (𝐶1, 𝐶𝑠, 𝐶𝑖, 𝐶2, 𝐶2ℎ, 𝐶2𝑣 ,
𝐷2, 𝐷2ℎ). If a molecule has non-Abelian point group symmetry, the largest Abelian subgroup will be used. For a
given group, the irreducible representations (irrep) are arranged according to Cotton’s book (Chemical Applications of
Group Theory). This ordering is reproduced in the following table and is the same as used in Psi4:

16 Chapter 2. Tutorials

Forte, Release 0.2.3

P oint g
roup

I rrep 0 I rrep 1 I rrep 2 I rrep 3 I rrep 4 I rrep 5 I rrep 6 I rrep 7

:ma th:`
C_1`

: math :A

:ma th:`
C_s`

:m ath:
A’

:ma th:`
A”`

:ma th:`
C_i`

: math
:A_ {g}

: math
:A_ {u}

:ma th:`
C_2`

: math :A : math :B

:m ath:
C_{ 2h}

: math
:A_ {g}

: math
:B_ {g}

: math
:A_ {u}

: math
:B_ {u}

:m ath:
C_{ 2v}

: math
:A_ {1}

: math
:B_ {1}

: math
:A_ {2}

: math
:B_ {2}

:ma th:`
D_2`

: math :A : math
:B_ {1}

: math
:B_ {2}

: math
:B_ {3}

:m ath:
D_{ 2h}

: math
:A_ {g}

:m ath:
B_{ 1g}

:m ath:
B_{ 2g}

:m ath:
B_{ 3g}

: math
:A_ {u}

:m ath:
B_{ 1u}

:m ath:
B_{ 2u}

:m ath:
B_{ 3u}

By default, Forte targets a total symmetric state (e.g., 𝐴1, 𝐴𝑔 , . . .). To specify a state with a different irreducible
representation (irrep), provide the ROOT_SYM option. This option takes an integer argument that indicates the irrep in
Cotton’s ordering.

2.3.4 Definition of orbital spaces

Running a Forte computation requires specifying a partitioning of the molecular orbitals. Forte defines five types of
elementary orbital spaces:

1. Frozen doubly occupied orbitals (FROZEN_DOCC). These orbitals are always doubly occupied.

2. Restricted doubly occupied orbitals (RESTRICTED_DOCC). Orbitals that are treated as doubly occupied by method
for static correlation. Restricted doubly occupied orbitals are allowed to be excited in in methods that add dynamic
electron correlation.

3. Active/generalized active orbitals (ACTIVE/GASn). Used to define active spaces or generalized active spaces
for static correlation methods. These orbitals are partially occupied. Standard complete active spaces can be
specified either via the ACTIVE or the GAS1 orbital space. For generalized active spaces, the user must provide
the number of orbitals in each irrep for all the GAS spaces required. GAS1 through GAS6 are currently supported.

4. Restricted unoccupied orbitals (RESTRICTED_UOCC). Also called virtuals, these orbitals are ignored by methods
for static correlation but considered by dynamic correlation approaches.

5. Frozen unoccupied orbitals (FROZEN_UOCC). These orbitals are always unoccupied.

The following table summarizes the properties of these orbital spaces:

2.3. Specifying a wave function in Forte 17

Forte, Release 0.2.3

Space Occupation in
CAS/GAS

Occupation in correlated
methods

Description

FROZEN_DOCC 2 2 Frozen doubly occupied or-
bitals

RE
STRICTED_DOCC

2 0-2 Restricted doubly occupied or-
bitals

GAS1, GAS2, . . . 0-2 0-2 Generalized active spaces
RE
STRICTED_UOCC

0 0-2 Restricted unoccupied orbitals

FROZEN_UOCC 0 0 Frozen unoccupied orbitals

Note: Forte makes a distinction between elementary and composite orbital spaces. The spaces defined above are all
elementary, except for ACTIVE, which is defined as the composite space of all the GAS spaces, that is, ACTIVE = GAS1
| GAS2 | GAS3 | GAS4 | GAS5 | GAS6. When the user specifies the value of a composite space like ACTIVE,
then all the orbitals are by default assigned to the first space, which in the case of ACTIVE is GAS1. It is important also
to note that when there is more than one irrep, the orbitals within a composite space are ordered first by irrep and then
by elementary space. This is important to keep in mind when plotting orbitals or for developers writing code in forte.

2.3.5 Orbital space specification

Selecting the correct set of orbitals for a multireference computation is perhaps one of the most important steps in
setting up an input file. To specify an orbital space, the user must provide the number of orbitals contained in each irrep
(see Point group symmetry). Since Forte only supports Abelian groups, each orbital space can be specified by a vector
of integers with at most eight entries. Note that irreps are arranged according to Cotton’s book (Chemical Applications
of Group Theory).

The following is an example of a computation on BeH2. This system has 6 electrons. We freeze the Be 1s-like orbital,
which has A1 symmetry. The 2a1 orbital is restricted doubly occupied and the 3a1/1b2 orbitals belong to the active
space. The remaining orbitals belong to the RESTRICTED_UOCC set and no virtual orbitals are frozen:

set forte{
A1 A2 B1 B2
frozen_docc [1 ,0 ,0 ,0]
restricted_docc [2 ,0 ,0 ,0]
active [1 ,0 ,0 ,1]
restricted_uocc [4 ,0 ,2 ,3]
frozen_uocc [0 ,0 ,0 ,0]

}

2.3.6 Partial specification of orbital spaces and space priority

Specifying all five orbital spaces for each computation is tedious and error prone. Forte can help reduce the number
of orbital spaces that the user needs to specify by making certain assumptions. The class that controls orbital spaces
(MOSpaceInfo) assumes that orbital spaces have the following priority:

GAS1 (= ACTIVE) > RESTRICTED_UOCC > RESTRICTED_DOCC > FROZEN_DOCC > FROZEN_UOCC > GAS2 >␣
→˓...

When the input does not contain all five orbital spaces, Forte will infer the size of other orbital spaces. It first sums up
all the orbitals specified by the user, and then assigns any remaining orbitals to the space not specified in the input that
has the highest priority.

18 Chapter 2. Tutorials

Forte, Release 0.2.3

In the case of the BeH2 example, it is necessary to specify only the FROZEN_DOCC, RESTRICTED_DOCC, and ACTIVE
orbital spaces:

set forte{
frozen_docc [1 ,0 ,0 ,0]
restricted_docc [2 ,0 ,0 ,0]
active [1 ,0 ,0 ,1]

Forte will automatically assign the following:
restricted_uocc [4 ,0 ,2 ,3]
frozen_uocc [0 ,0 ,0 ,0]
gas1 [1 ,0 ,0 ,1]
gas2 [0 ,0 ,0 ,0]
gas3 [0 ,0 ,0 ,0]
gas4 [0 ,0 ,0 ,0]
gas5 [0 ,0 ,0 ,0]
gas6 [0 ,0 ,0 ,0]

}

the remaining 9 orbitals are automatically assigned to the RESTRICTED_UOCC space. This space, together with
FROZEN_UOCC, was not specified in the input. However, RESTRICTED_UOCC has higher priority than the FROZEN_UOCC
space, so Forte will assign all the remaining orbitals to the RESTRICTED_UOCC set.

A Forte input with no orbital space specified will assign all orbitals to the active space:

set forte{
Forte will automatically assign the following:
frozen_docc [0 ,0 ,0 ,0]
restricted_docc [0 ,0 ,0 ,0]
active [7 ,0 ,2 ,4]
restricted_uocc [0 ,0 ,0 ,0]
frozen_uocc [0 ,0 ,0 ,0]

}

Note that except for computations with small basis sets, declaring all orbitals active might be unfeasible.

As a general rule, it is recommended that users run SCF computations and inspect the orbitals prior to selecting an
active space.

2.3.7 Occupation numbers of GAS wave functions

General active space (GAS) wave functions are defined by partitioning the active space into subspaces and specifying
constraints on the occupation of these subspaces. To specify a general active space (GAS) wave function, the user must
select the GAS spaces (see Definition of orbital spaces) and the minimum and maximum occupation numbers of each
GAS space. This is done by passing two list of integers for each GASN space, GASNMIN and GASNMAX. For example, the
following input defines the orbitals associated with two GAS spaces (GAS1 and GAS2).

set forte{
gas1 [2,0,0,0]
gas2 [2,0,1,2]
gas1min [2]
gas1max [4]

}

2.3. Specifying a wave function in Forte 19

Forte, Release 0.2.3

The options GAS1MIN and GAS1MAX specify the minimum and maximum numbers allowed in the GAS1 space. This
information is sufficient to determine all possible GAS occupations.

2.4 Specifying calculations of multiple states

2.4.1 Requesting multiple solutions of a given spin and symmetry

Codes that support excited states take the additional option NROOT, which can be used to specify the number of solutions
(roots) of the charge, multiplicity, and symmetry specified by the user.

Assuming a 𝐶2𝑣 molecular point group, the following example is for an input to compute three state of symmetry 4𝐴2

for a neutral molecule:

set forte {
charge 0 # <-- neutral
multiplicity 4 # <-- quartet
root_sym 1 # <-- A_2
nroot 3 # <-- three solutions

}

2.4.2 Requesting multiple solutions of different spin and symmetry

For certain types of multistate computations (e.g., state-averaged CASSCF), one may want to compute solutions of
different spin and symmetry.

The simplest way to do so is by specifying the AVG_STATE option to define different sets of electronic states. This option
is passed as a list of triplets of numbers [[irrep1, multi1, nstates1], [irrep2, multi2, nstates2], ..
.], where irrep, multi, and nstates specify the irrep, multiplicity, and the number of states of each type requested.

For example, for a molecule with 𝐶2𝑣 point group symmetry, the following input requests four 3𝐵1 states and two 5𝐵2

states:

set forte {
avg_state [[2,3,4],[3,5,2]] # <-- [(B1, triplet, 4 states), (B2,quintet,2 states)]

}

When AVG_STATE is specified, each state is assigned a weight, which by default is 1/𝑁 where 𝑁 is the total number
of states computed. The weights of all the states can also be indicated with the AVG_WEIGHT option. This option is
a list of lists of numbers that indicate the weight of each state in a triplet defined via AVG_STATE. This option takes
the format [[w1_1, w1_2, ..., w1_l], " [w2_1, w2_2, ..., w2_m], ...], where each sublist specifies the
weights of states defined by a triplet [irrep, multi, nstates].

Suppose we want to do a computation on a singlet and two triplet 𝐴1 states, and assign a weight of 1/4 to the 1𝐴1 state
and weights of 1/2 and 1/4 to the 3𝐴1 states. This computation can be specified by the input:

set forte {
avg_state [[0,1,1],[0,3,2]]
avg_weight [[0.25],[0.5,0.25]]

}

If the state weights do not add up to one, Forte will scale them, so the following input is an equivalent way to perform
the same computation:

20 Chapter 2. Tutorials

Forte, Release 0.2.3

set forte {
avg_state [[0,1,1],[0,3,2]]
avg_weight [[1.],[2.,1.]]

}

2.4.3 Multistate GAS calculations

Multistate computations using a GAS partitioning (see :ref:Occupation numbers of GAS wave functions) can
be used to generate even more nuanced electronic states. When the electronic states are specified via the AVG_STATE
option, one can indicate states with different GAS occupations by setting the GASNMIN and GASNMAX options. For
multistate computations, these are lists that specify the minimum and maximum occupation of each GAS space for
each triplet that defines an electronic state.

For example, the test case tests/methods/gasci-2 shows how to compute two electronic states of the water molecule
of 1𝐴1 symmetry. These two states use different occupation restrictions. Specifically, the O 1s-like orbital (1𝑎1) has
maximum occupation of 2 and 1 in the two electronic states:

set forte {
gas1 [1,0,0,0]
gas2 [3,0,1,2]
gas1min [0,0]
gas1max [2,1] # The second set of states is constrained to have at most 1 electron in␣

→˓GAS1
avg_state [[0,1,1],[0,1,1]] # 2 states of singlet A_1 symmetry and different GAS

}

While the first state is representative of the ground state of water, the second state corresponds to a core-excited state.

2.5 Examples of advanced Forte computations

2.5.1 Computing one or more FCI solutions of a given symmetry

The first example shows how to perform separate computations on different electronic states of methylene. We compute
the lowest 3𝐵1 state and the first two 1𝐴1 states. All of these computations use ROHF orbitals optimized for the lowest
3𝐵1. Here we use the python API interface of Forte, but it is easy to translate these examples to a psi4 psithon input.

This input (see examples/api/02_rohf_fci.py) starts with the geometry specification:

examples/api/02_rohf_fci.py

import psi4
import forte

mol = psi4.geometry("""
0 3 # triplet state
C
H 1 1.085
H 1 1.085 2 135.5
""")

psi4.set_options(
(continues on next page)

2.5. Examples of advanced Forte computations 21

Forte, Release 0.2.3

(continued from previous page)

{
'basis': 'DZ',
'scf_type': 'pk', # <-- request conventional two-electron integrals
'e_convergence': 12,
'reference': 'rohf',
'forte__active_space_solver': 'fci',
'forte__restricted_docc': [1, 0, 0, 0],
'forte__active': [3, 0, 2, 2],
'forte__multiplicity': 3, # <-- triplet state
'forte__root_sym': 2, # <-- B1 symmetry

}
)

Note that all options prefixed with forte__ are specific to the Forte computation. Here we specify a multiplic-
ity equal to 3 and the 𝐵1 irrep (root_sym = 2). In this example we keep the lowest 𝐴1 MO doubly occupied
('restricted_docc': [1, 0, 0, 0]) and use an active space that contains three 𝐴1 MOs, and two MOs each
of 𝐵1 and 𝐵2 symmetry. Lastly, we run Forte:

psi4.energy('forte')

This input will run a CASCI computation (since we have not requested orbital optimization). An example of how to
request orbital optimization can be found in the section Computing a manifold of solutions of different symmetry. The
output will return the energy and show the composition of the wave function:

==> Root No. 0 <==

2b0 a0 20 0.70326213
2a0 b0 20 -0.70326213

Total Energy: -38.924726774489, <S^2>: 2.000000

==> Energy Summary <==

Multi.(2ms) Irrep. No. Energy <S^2>
--

3 (0) B1 0 -38.924726774489 2.000000
--

Next we change the options to compute the lowest two 1𝐴1 states. We modify the multiplicity, the symmetry, and
indicate that we want two roots (NROOTS = 2):

psi4.set_options({
'forte__multiplicity': 1,
'forte__root_sym': 0, # <-- A1 symmetry
'forte__nroots' : 2}

)
psi4.energy('forte')

The results of this computation is:

==> Root No. 0 <==

220 00 20 0.92134189
(continues on next page)

22 Chapter 2. Tutorials

Forte, Release 0.2.3

(continued from previous page)

200 20 20 -0.37537841

Total Energy: -38.866616413802, <S^2>: -0.000000

==> Root No. 1 <==

200 20 20 -0.89364609
220 00 20 -0.36032959
ab0 20 20 -0.13675846
ba0 20 20 -0.13675846

Total Energy: -38.800424868719, <S^2>: -0.000000

==> Energy Summary <==

Multi.(2ms) Irrep. No. Energy <S^2>
--

1 (0) A1 0 -38.866616413802 -0.000000
1 (0) A1 1 -38.800424868719 -0.000000

--

2.5.2 State-averaged CASSCF with states of different symmetry

The next example shows how to perform a state-averaged CASSCF computation on two electronic states of dif-
ferent symmetries. We still consider methylene, and average the lowest 3𝐵1 and 1𝐴1 states. To begin, we use
ROHF orbitals optimized for the lowest 3𝐵1. However, the final orbitals will optimize the average energy :raw-
latex:`\begin{equation} E_\mathrm{avg} = \frac{1}{2} \left(E_{^3B_1} + E_{^1A_1}\right). \end{equation}` We
use the same active space of the previous example, but here to specify the state, we set the AVG_STATE option:

examples/api/03_sa-casscf.py

import psi4
import forte

psi4.geometry("""
0 3
C
H 1 1.085
H 1 1.085 2 135.5
""")

psi4.set_options({'basis': 'DZ', 'scf_type': 'pk', 'e_convergence': 12, 'reference':
→˓'rohf',

'forte__job_type': 'mcscf_two_step',
'forte__active_space_solver': 'fci',
'forte__restricted_docc': [1, 0, 0, 0],
'forte__active': [3, 0, 2, 2],
'forte__avg_state': [[2, 3, 1], [0, 1, 1]]
[(B1, triplet, 1 state), (A1,singlet,1 state)]

}
)

(continues on next page)

2.5. Examples of advanced Forte computations 23

Forte, Release 0.2.3

(continued from previous page)

psi4.energy('forte')

The output of this computation (in examples/api/03_sa-casscf.out) shows the energy for both states in the fol-
lowing table:

==> Energy Summary <==

Multi.(2ms) Irrep. No. Energy <S^2>
--

1 (0) A1 0 -38.900217662950 0.000000
--

3 (0) B1 0 -38.960623289646 2.000000
--

2.5.3 Using different mean-field guesses in CASSCF computations

A common issue when running CASSCF computation problematic convergence due to a poor orbital guess. By default,
Forte’s CASSCF code uses a Hartree-Fock guess on a state with the same charge and multiplicity of the solution that
we are seeking. The next example shows how to provide initial orbitals from states with different multiplicity, different
charge and multiplicity, or obtained via DFT. Here we target the singlet state of methylene, using the same active space
of the previous example.

Guess with a different multiplicity

In the first example, we will ROHF orbitals for the triplet state as a starting guess for CASSCF. To specify a triplet
state we modify the geometry section. After the ROHF computation, we pass the option forte__multiplicity to
instruct Forte to optimize a singlet state

examples/api/04_casscf-triplet-guess.py

import psi4
import forte

psi4.geometry("""
0 3 # <-- here we specify a triplet state
C
H 1 1.085
H 1 1.085 2 135.5
""")

psi4.set_options({'basis': 'DZ', 'scf_type': 'pk', 'e_convergence': 12, 'reference':
→˓'rohf'})

e, wfn = psi4.energy('scf',return_wfn=True)

psi4.set_options({
'forte__job_type': 'mcscf_two_step',
'forte__multiplicity' : 1, # <-- to override multiplicity = 2 assumed from␣

→˓geometry
(continues on next page)

24 Chapter 2. Tutorials

Forte, Release 0.2.3

(continued from previous page)

'forte__active_space_solver': 'fci',
'forte__restricted_docc': [1, 0, 0, 0],
'forte__active': [3, 0, 2, 2],

}
)

psi4.energy('forte',ref_wfn=wfn)

Guess with different charge and multiplicity

In the second example, we will ROHF orbitals for the doublet cation as a starting guess for CASSCF. The relevant
changes are made in the geometry section, where we indicate a charge of +1 and multiplicity equal to 2:

examples/api/05_casscf-doublet-guess.py

...

psi4.geometry("""
1 2
C
H 1 1.085
H 1 1.085 2 135.5
""")

and we also add options to fully specify the values of charge, multiplicity, and 𝑀𝑆 used to perform the CASSCF
computation

psi4.set_options({
'forte__job_type': 'mcscf_two_step',
'forte__charge' : 0, # <-- to override charge = +1 assumed from geometry
'forte__multiplicity' : 1, # <-- to override multiplicity = 2 assumed from␣

→˓geometry
'forte__ms' : 0, # <-- to override ms = 1/2 assumed from geometry
'forte__active_space_solver': 'fci',
'forte__restricted_docc': [1, 0, 0, 0],
'forte__active': [3, 0, 2, 2],

}
)

Guess based on DFT orbitals

In the last example, we pass DFT orbitals (triplet UB3LYP) as a starting guess:

examples/api/06_casscf-dft-guess.py

...

psi4.geometry("""
0 3
C

(continues on next page)

2.5. Examples of advanced Forte computations 25

Forte, Release 0.2.3

(continued from previous page)

H 1 1.085
H 1 1.085 2 135.5
""")

psi4.set_options({'basis': 'DZ', 'scf_type': 'pk', 'e_convergence': 12, 'reference': 'uks
→˓'})

e, wfn = psi4.energy('b3lyp',return_wfn=True)

psi4.set_options({
'forte__job_type': 'mcscf_two_step',
'forte__charge' : 0, # <-- to override charge = +1 assumed from geometry
'forte__multiplicity' : 1, # <-- to override multiplicity = 2 assumed from␣

→˓geometry
'forte__ms' : 0, # <-- to override ms = 1/2 assumed from geometry
'forte__active_space_solver': 'fci',
'forte__restricted_docc': [1, 0, 0, 0],
'forte__active': [3, 0, 2, 2],

}
)

The following is a numerical comparison of the convergence pattern of these three computations and the default guess
used by Forte (singlet RHF, in this case)

Singlet RHF guess (default guess)

Energy CI Energy Orbital
------------------------------ ------------------------------

Iter. Total Energy Delta Total Energy Delta Orb. Grad. ␣
→˓Micro

→˓---

1 -38.869758479716 0.0000e+00 -38.878577088058 0.0000e+00 6.0872e-07 ␣
→˓ 9

2 -38.894769773234 -2.5011e-02 -38.899566097104 -2.0989e-02 5.9692e-07 ␣
→˓ 9

3 -38.900644175245 -5.8744e-03 -38.900811142131 -1.2450e-03 2.8974e-07 ␣
→˓ 7

4 -38.900845440821 -2.0127e-04 -38.900853293556 -4.2151e-05 2.1094e-07 ␣
→˓ 6

5 -38.900856221599 -1.0781e-05 -38.900856382896 -3.0893e-06 3.5078e-07 ␣
→˓ 5

6 -38.900856468519 -2.4692e-07 -38.900856468929 -8.6033e-08 2.7648e-07 ␣
→˓ 4

7 -38.900856469070 -5.5024e-10 -38.900856469077 -1.4813e-10 3.4940e-08 ␣
→˓ 3

→˓---

Triplet ROHF guess (04_casscf-triplet-guess.out)

(continues on next page)

26 Chapter 2. Tutorials

Forte, Release 0.2.3

(continued from previous page)

Energy CI Energy Orbital
------------------------------ ------------------------------

Iter. Total Energy Delta Total Energy Delta Orb. Grad. ␣
→˓Micro

→˓---

1 -38.866616410911 0.0000e+00 -38.877770272313 0.0000e+00 1.8365e-06 ␣
→˓10

2 -38.894804745194 -2.8188e-02 -38.899492369417 -2.1722e-02 1.8438e-06 ␣
→˓ 9

3 -38.900608150627 -5.8034e-03 -38.900797672192 -1.3053e-03 1.1877e-07 ␣
→˓ 8

4 -38.900840657824 -2.3251e-04 -38.900851568289 -5.3896e-05 2.8346e-07 ␣
→˓ 6

5 -38.900856107378 -1.5450e-05 -38.900856342345 -4.7741e-06 3.5145e-07 ␣
→˓ 5

6 -38.900856468806 -3.6143e-07 -38.900856469025 -1.2668e-07 2.6265e-07 ␣
→˓ 4

7 -38.900856469077 -2.7063e-10 -38.900856469079 -5.3831e-11 3.0108e-08 ␣
→˓ 3

→˓---

Doublet ROHF (examples/api/05_casscf-doublet-guess.out)

Energy CI Energy Orbital
------------------------------ ------------------------------

Iter. Total Energy Delta Total Energy Delta Orb. Grad. ␣
→˓Micro

→˓---

1 -38.819565876524 0.0000e+00 -38.862403924512 0.0000e+00 2.4525e-06 ␣
→˓14

2 -38.893973814690 -7.4408e-02 -38.899703281038 -3.7299e-02 2.7109e-06 ␣
→˓11

3 -38.900705647525 -6.7318e-03 -38.900828470211 -1.1252e-03 4.6263e-07 ␣
→˓ 9

4 -38.900850304213 -1.4466e-04 -38.900854820184 -2.6350e-05 2.4524e-07 ␣
→˓ 8

5 -38.900856305078 -6.0009e-06 -38.900856411175 -1.5910e-06 4.4290e-07 ␣
→˓ 7

6 -38.900856468122 -1.6304e-07 -38.900856468764 -5.7589e-08 1.6046e-07 ␣
→˓ 7

7 -38.900856469077 -9.5575e-10 -38.900856469079 -3.1550e-10 2.7174e-08 ␣
→˓ 3

→˓---

Unrestricted DFT (B3LYP) guess (examples/api/06_casscf-dft-guess.out)

(continues on next page)

2.5. Examples of advanced Forte computations 27

Forte, Release 0.2.3

(continued from previous page)

Energy CI Energy Orbital
------------------------------ ------------------------------

Iter. Total Energy Delta Total Energy Delta Orb. Grad. ␣
→˓Micro

→˓---

1 -38.864953251693 0.0000e+00 -38.878418350280 0.0000e+00 1.6735e-06 ␣
→˓11

2 -38.893853205980 -2.8900e-02 -38.899336177723 -2.0918e-02 1.7239e-06 ␣
→˓ 9

3 -38.900627125514 -6.7739e-03 -38.900811355470 -1.4752e-03 1.6239e-07 ␣
→˓ 8

4 -38.900846596355 -2.1947e-04 -38.900853835219 -4.2480e-05 9.5895e-08 ␣
→˓ 7

5 -38.900856239152 -9.6428e-06 -38.900856388795 -2.5536e-06 1.0132e-07 ␣
→˓ 6

6 -38.900856468388 -2.2924e-07 -38.900856468891 -8.0096e-08 6.1277e-08 ␣
→˓ 5

7 -38.900856469072 -6.8447e-10 -38.900856469078 -1.8658e-10 2.4832e-08 ␣
→˓ 3

→˓---

2.6 Selecting two-electron integral types

Forte can handle different types of exact and approximate two-electron integrals. This section describes the various
options available and their properties/limitations. The selection of different integral types is controlled by the option
INT_TYPE

2.6.1 Conventional integrals

Conventional integrals are the default choice for Forte. When this option is selected, Forte will compute and store the
two-electron integrals in the molecular orbital (MO) basis 𝜑𝑝.

⟨𝑝𝑞|𝑟𝑠⟩ =

∫︁
𝑑𝑥1𝑑𝑥2𝜑

*
𝑝(𝑥1)𝜑*𝑞(𝑥2)𝑟−1

12 𝜑𝑟(𝑥1)𝜑𝑠(𝑥2)

These integrals are computed with Psi4’s IntegralTrasform class and written to disk. Forte will store three copies
of these integrals, the antisymmetrized alpha-alpha and beta-beta integrals

⟨𝑝𝛼𝑞𝛼‖𝑟𝛼𝑠𝛼⟩, ⟨𝑝𝛽𝑞𝛽‖𝑟𝛽𝑠𝛽⟩,

and the alpha-beta integrals (not antisymmetrized)

⟨𝑝𝛼𝑞𝛽 |𝑟𝛼𝑠𝛽⟩,

for all values of 𝑝, 𝑞, 𝑟, 𝑠. Storage of these integrals has a memory cost equal to 3𝑁4, where 𝑁 is the number of
orbitals that are correlated (frozen core and virtual orbitals excluded). Therefore, conventional integrals are viable for
computations with at most 100-200 orbitals. For larger bases, density Fitting and Cholesky decomposition are instead
recommended.

28 Chapter 2. Tutorials

Forte, Release 0.2.3

2.6.2 Density Fitting (DF) and Cholesky Decomposition (CD)

The density fitting and Cholesky decomposition methods approximate two-electron integrals as products of three-index
tensors 𝑏𝑃𝑝𝑟

⟨𝑝𝑞|𝑟𝑠⟩ =

𝑀∑︁
𝑃

𝑏𝑃𝑝𝑟𝑏
𝑃
𝑞𝑠

where 𝑀 is a quantity of the order 3𝑁 .

Note: The equations reported here use physicist notation for the two-electron integrals, but the DF/CD literature usually
adopts chemist’s notation. The main difference between DF and CD is in the way the B tensors are defined. In DF, the
𝑏 tensor is defined as

𝑏𝑄𝑝𝑞 =
∑︁
𝑝

(𝑝𝑞|𝑃)[(𝑃 |𝑄)−1/2]𝑃𝑄

where the indices 𝑃 and 𝑄 refer to the auxiliary basis set.

Two options control the type of density fitting basis used in forte. The auxiliary basis used in the correlated computa-
tions is defined via the Psi4 option DF_BASIS_MP2. The auxiliary basis used in CASSCF is defined via the Psi4 option
DF_BASIS_SCF. These two options can be different, but this might lead to an unconsistent treatment of correlation
effects.

In the CD approach, the 𝑏 tensor is formed via Cholesky decomposition of the exact two-electron integrals in the atomic
basis. The accuracy of this decomposition (and the resulting two-electron integrals) is determined by a user defined
tolerance selected via the option CHOLESKY_TOLERANCE. Both the DF and CD algorithms store the 𝑏 tensor in memory,
and therefore, they require 𝑀𝑁2 ≈ 3𝑁3 memory for storage. On a single node with 128 GB of memory, DF and CD
computations allow to treat up to 1000 orbitals.

2.6.3 Disk-based Density Fitting (DiskDF)

Calculations with more than 1000 basis functions quickly become unfeasible as the memory requirements of density
fitting grows as the cube of basis size. In this case, it is possible to switch to a disk-based implementation of DF, which
assumes that the 𝑏 tensor can be fully stored on disk.

2.6.4 Integrals from a FCIDUMP file

Most of Forte computations can also be executed using integrals read from a FCIDUMP file. To read integrals in the
FCIDUMP format just use the option INT_TYPE = FCIDUMP. For example:

import forte
set forte {
active_space_solver fci
int_type fcidump
frozen_docc [2 ,0 ,0 ,0]
restricted_docc [2 ,0 ,0 ,0]
active [2 ,2 ,2 ,2]

}

The default name of the FCIDUMP file is INTDUMP, but it can be changed via the option FCIDUMP_FILE. Forte will read
the number of orbital, number of electrons, the multiplicity, and irrep from the FCIDUMP file. This information is then
used to build a StateInfo object that contains all information regarding the electronic state that will be computed. The
user can, however, select a different state by specifying the number of electrons (NEL), multiplicity (MULTIPLICITY),
and irrep (ROOT_SYM) via the appropriate options.

2.6. Selecting two-electron integral types 29

Forte, Release 0.2.3

2.6.5 Integral Selection Keywords

The following keywords control the integral class and affect all computations that run in Forte:

• INT_TYPE INT_TYPE selects the integral type used in the calculation

– Type: string

– Default: CONVENTIONAL

– Possible Values: CONVENTIONAL, DF, CHOLESKY, DISKDF, FCIDUMP

• CHOLESKY_TOLERANCE The tolerance for the cholesky decomposition. This keyword determines the
accuracy of the computation. A smaller tolerance is a more accurate computation. The tolerance for the cholesky
decomposition:

– Type: double in scientific notation (ie 1e-5 or 0.0001)

– Default: 1.0e-6

• DF_BASIS_MP2 The basis set used for density fitting the integrals used in all correlated computations. This
keyword needs to be placed in the globals section of a Psi4 input. This basis should be one of the RI basis sets
designed for a given primary basis, for example, when using BASIS = cc-pVDZ you should use DF_BASIS_MP2
= cc-pVDZ-RI.

– Type: string specifing basis set

– Default: none

• DF_BASIS_SCF The basis set used for density fitting the integrals used in forte’s CASSCF computations. This
keyword needs to be placed in the globals section of a Psi4 input. This basis should be one of the JK basis sets
designed for a given primary basis, for example, when using BASIS = cc-pVDZ you should use DF_BASIS_SCF
= cc-pVDZ-JKfit.

– Type: string specifing basis set

– Default: none

• FCIDUMP_FILE FCIDUMP_FILE selects the file from which to read the integrals in the FCIDUMP format

– Type: string

– Default: INTDUMP

2.7 Reading integrals in a spin orbital basis

In this tutorial, you will learn how to read access integrals in a spin orbital basis from python. These integrals can be
used in pilot implementations of quantum chemistry methods. By the end of this tutorial you will know how to read
the integrals and compute the Hartree-Fock energy. For an implementation of MP2 based on the spin orbital integrals
see the file tests/pytest/helpers/test_spinorbital.py in the forte directory.

Forte assumes that the spin orbital basis {𝜓𝑝} is organized as follows

𝜑0,𝛼⏟ ⏞
𝜓0

, 𝜑0,𝛽⏟ ⏞
𝜓1

, 𝜑1,𝛼⏟ ⏞
𝜓2

, 𝜑1,𝛽⏟ ⏞
𝜓3

, . . .

To read the one-electron integrals ℎ𝑝𝑞 = ⟨𝜓𝑝|ℎ̂|𝜓𝑞⟩ we use the function spinorbital_oei. This function takes as
arguments a ForteIntegrals object and two lists of integers, p and q, that specify the indices of the bra and ket
spatial orbitals. For example, if we want the integrals over the bra functions 𝜓0, 𝜓1, 𝜓3 and ket functions 𝜓5, 𝜓6 we
can write the following code

30 Chapter 2. Tutorials

Forte, Release 0.2.3

p = [0,1,3]
q = [5,6]
h = forte.spinorbital_oei(ints, p, q)

To read the two-electron antisymmetrized integrals in physicist notation ⟨𝑝𝑞‖𝑟𝑠⟩ we use the function
spinorbital_tei, passing four list that corresponds to the range of the indices p, q, r, and s.

p = [0,1]
q = [0,1]
r = [2,3]
s = [2,3]
v = forte.spinorbital_tei(ints, p, q, r, s)

To compute the SCF energy we evaluate the expression

𝐸 = 𝑉NN +

docc∑︁
𝑖

ℎ𝑖𝑖 +
1

2

docc∑︁
𝑖𝑗

⟨𝑖𝑗‖𝑖𝑗⟩

where 𝑉NN is the nuclear repulsion energy. To evaluate this expression we only need the one- and two-electron integral
blocks that corresponds to the doubly occupied orbitals.

2.7.1 Preparing the orbitals via the utils.psi4_scf helper function

To prepare an integral object it is necessary to first run a HF or CASSCF computation.

Forte provides helper functions to run these computations using psi4. By default this function uses conventional
integrals.

import math
import numpy as np
import forte
import forte.utils

geom = """
O
H 1 1.0
H 1 1.0 2 104.5
"""

escf_psi4, wfn = forte.utils.psi4_scf(geom=geom, basis='6-31G', reference='RHF')

grab the orbital occupation
doccpi = wfn.doccpi().to_tuple()
soccpi = wfn.soccpi().to_tuple()

print(f'The SCF energy is {escf_psi4} [Eh]')
print(f'SCF doubly occupied orbitals per irrep: {doccpi}')
print(f'SCF singly occupied orbitals per irrep: {soccpi}')

The SCF energy is -75.98015792193438 [Eh]
SCF doubly occupied orbitals per irrep: (3, 0, 1, 1)
SCF singly occupied orbitals per irrep: (0, 0, 0, 0)

2.7. Reading integrals in a spin orbital basis 31

Forte, Release 0.2.3

2.7.2 Preparing the integral object

To prepare the integrals, we use the helper function utils.prepare_forte_objects. We pass the psi4 wave function
object (wfn) and specify the number of doubly occupied orbitals using the SCF occupation from psi4. Virtual orbitals
are automatically determined.

mo_spaces={'RESTRICTED_DOCC' : doccpi, 'ACTIVE' : soccpi}
forte_objects = forte.utils.prepare_forte_objects(wfn,mo_spaces)

The forte_objects returned is a dictionary, and we can access the ForteIntegral object using the key ints.
We store this object in the variable ints. We will also use the MOSpaceInfo object, which is stored with the key
mo_space_info.

ints = forte_objects['ints']
mo_space_info = forte_objects['mo_space_info']

2.7.3 Preparing list of doubly occupied orbitals

From the MOSpaceInfo object we can find the list of doubly occupied orbitals

rdocc = mo_space_info.corr_absolute_mo('RESTRICTED_DOCC')
print(f'List of doubly occupied orbitals: {rdocc}')

List of doubly occupied orbitals: [0, 1, 2, 7, 9]

2.7.4 Preparing the core blocks of the Hamiltonian

Here we call the functions that return the integrals in the spin orbital basis. We store those in two variables, h and v.

h = forte.spinorbital_oei(ints, rdocc, rdocc)
v = forte.spinorbital_tei(ints, rdocc, rdocc, rdocc, rdocc)

with np.printoptions(precision=2, suppress=True):
print(h)

[[-32.98 0. -0.58 0. -0.19 0. 0. 0. 0. 0.]
[0. -32.98 0. -0.58 0. -0.19 0. 0. 0. 0.]
[-0.58 0. -7.78 0. -0.3 0. 0. 0. 0. 0.]
[0. -0.58 0. -7.78 0. -0.3 0. 0. 0. 0.]
[-0.19 0. -0.3 0. -6.8 0. 0. 0. 0. 0.]
[0. -0.19 0. -0.3 0. -6.8 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. -7.07 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. -7.07 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. -6.5 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. -6.5]]

32 Chapter 2. Tutorials

Forte, Release 0.2.3

2.7.5 Evaluating the energy expression

Here we add the three contributions to the energy and check the SCF energy computed with psi4 and the one recomputed
here

escf = ints.nuclear_repulsion_energy()
escf += np.einsum('ii->', h)
escf += 0.5 * np.einsum('ijij->', v)

print(f'The SCF energy is {escf_psi4} [Eh] (psi4)')
print(f'The SCF energy is {escf} [Eh] (spin orbital integrals)')
print(f'The difference is {escf_psi4 - escf} [Eh]')
assert math.isclose(escf, escf_psi4)

The SCF energy is -75.98015792193442 [Eh] (psi4)
The SCF energy is -75.98015792193439 [Eh] (spin orbital integrals)
The difference is -2.842170943040401e-14 [Eh]

2.7. Reading integrals in a spin orbital basis 33

Forte, Release 0.2.3

34 Chapter 2. Tutorials

CHAPTER

THREE

HOWTOS

3.1 Full configuration interaction

3.1.1 Running the test cases

Forte provides test cases for most of all methods implemented. This is a good place to start if you are new to Forte.
After compiling and setting up PYTHONPATH, you can run the test cases:

cd tests/methods
python run_forte_tests_travis.py

3.2 ACI: Adaptive Configuration Interaction

3.2.1 Theory

The Adaptive Configuration Interaction Method (ACI) is an iterative selected CI method that optimizes a space of
determinants such that the total error in the energy is controlled by a user-defined parameter, 𝜎,

|𝐸CASCI − 𝐸ACI| ≈ 𝜎.

The ACI algorithm grows a set of reference determinants (𝑃) and screens its first-order interacting space using per-
turbative energy estimates. This screening is done in a cumulative fasion to produce an approximation to the total
correlation energy ignored. The space of reference (𝑃) and selected determinants (𝑄) define the ACI model space
(𝑀). The Hamiltonian is diagonalized in this space to produce the ACI energy and wave function,

|Ψ𝑀 ⟩ =
∑︁
Φ𝜇

𝐶𝜇|Φ𝜇⟩.

The algorithm proceeds with a pruning step to get a new (𝑃) space to start the next iteration. The iterations end when
the ACI energy is satisfactorily converged, which produces a total error that matches 𝑠𝑖𝑔𝑚𝑎 very closely. Additionally,
the perturbative estimates of the determinants excluded from the model space can be used as a perturbative correction,
which we denote as the ACI+PT2 energy.

35

Forte, Release 0.2.3

3.2.2 A Few Practical Notes

• In Forte, ACI wave functions are defined only in the active orbitals.

• The ACI wave function is defined is a set of Slater Determinants, so it is not guaranteed to be a pure spin
eigenfunction. As a result, we augment ACI wave functions throughout the procedure to ensure each intermediate
space of determinants is spin complete.

• The initial 𝑃 space is defined from a small CAS wave function so that there are fewer than 1000 determinants.
This can be enlarged to improve convergence if needed using the ACTIVE_GUESS_SIZE option.

• This portion of the manual will discuss ACI usage generally, but all content is transferrable to the case where
ACI is used as a reference for DSRG computations. If that is the case, the option CAS_TYPE ACI needs to be
set.

3.2.3 A First Example

The simplest input for an ACI calculation involves specifying values for 𝜎.

import forte

molecule h2o {
0 1
O
H 1 0.96
H 1 0.96 2 104.5

}

set {
basis sto-3g
reference rhf

}

set forte {
job_type aci
sigma 0.001

}
E_scf, scf_wfn = energy('scf', return_wfn=True)
energy('forte', ref_wfn=scf_wfn)

Though not required, it is good practice to also specify the number of roots, multiplicity, symmetry, and charge. The
output contains information about the sizes and energies of the 𝑃 and 𝑀 spaces at each step of the iteration, and
provides a summary of the converged wave function:

==> ACI Summary <==

Iterations required: 3
Dimension of optimized determinant space: 24

* Adaptive-CI Energy Root 0 = -75.012317069484 Eh = 0.0000 eV
* Adaptive-CI Energy Root 0 + EPT2 = -75.013193884201 Eh = 0.0000 eV

==> Wavefunction Information <==

(continues on next page)

36 Chapter 3. HOWTOs

Forte, Release 0.2.3

(continued from previous page)

Most important contributions to root 0:
0 -0.987158 0.974480589 16 |2220220>
1 0.076700 0.005882905 15 |2220202>
2 -0.046105 0.002125685 13 |22-+2+->
3 -0.046105 0.002125685 14 |22+-2-+>
4 0.044825 0.002009273 12 |2202220>
5 0.043438 0.001886853 11 |2222200>
6 0.040971 0.001678638 10 |2200222>
7 0.033851 0.001145896 9 |22--2++>
8 0.033851 0.001145896 8 |22++2-->
9 0.032457 0.001053488 7 |2+-2220>

Spin state for root 0: S^2 = 0.000000, S = 0.000, singlet

==> Computing Coupling Lists <==

0.000186 s
0.000186 s
0.000333 s
0.000307 s
0.000866 s

1-RDM took 0.000107 s (determinant)

==> NATURAL ORBITALS <==

1A1 2.000000 1B1 1.998476 2A1 1.998399
3A1 1.977478 1B2 1.974442 2B2 0.025891
4A1 0.025314

RDMS took 0.002290

Adaptive-CI ran in : 0.067389 s

For ground state computations, very few additional options are required unless very large determinants spaces are
considered. In this case, memory efficient screening and diagonalization algorithms can be chosen.

3.2.4 Computing Excited States with ACI

3.2.5 ACI Options

Basic Options

NROOT
Number of CI roots to find. If energy(‘aci’) is used, energy criteria will be computed for each root with respect to a
trial wavefunction. The maximum value among each root will then be used for evaluation with 𝜏𝑞 .

• Type: int

• Default: 1

3.2. ACI: Adaptive Configuration Interaction 37

Forte, Release 0.2.3

SELECT_TYPE
Specifies whether second order PT theory energy correction, or first order amplitude is used in selecting the 𝑄 space.

• Type: string

• Options: AMP, ENERGY, AIMED_AMP, AIMED_ENERGY

• Default: AMP

TAUP
Threshold used to prune the 𝑃 +𝑄 space

• Type: double

• Default: 0.01

TAUQ
Threshold used to select the 𝑄 space

• Type: double

• Default: 0.000001

Expert Options

DIAG_ALGORITHM
The algorithm used in all diagonalizations. This option is only needed for calculations with very large configuration
spaces.

• Type: string

• Options: DAVIDSON, FULL, DAVIDSON_LIST

• Default: DAVIDSON

SMOOTH
This option implements a smoothing function for the Hamiltonian that makes the energy an everywhere-differentiable
function of a geometric coordinate by gradually gradually decoupling the determinant of least importance. This function
is useful for correcting discontinuities in potential energy curves, but it can yeild non-physical curves if the disconti-
nuities are large.

• Type: bool

• Default: False

SMOOTH_THRESHOLD
The threshold for smoothing the Hamiltonian

• Type: double

• Default: 0.01

EXCITED_ALGORITHM
This option determines the algorithm to compute excited states. Currently the only options implemented are
“STATE_AVERAGE” which means that a function of the criteria among the excited states of interest are used to
build the configuraiton space, and “ROOT_SELECT” where the determinant space is constructed with respect to a
single root.

• Type: string

38 Chapter 3. HOWTOs

Forte, Release 0.2.3

• Options: “STATE_AVERAGE”, “ROOT_SELECT”

• Default: “STATE_AVERAGE”

PERTURB_SELECT
Option defines 𝜏𝑞 as either MP2 estimate or estimate derived from 2D diagonalization. True uses the MP2 estimation.

• Type: bool

• Default: false

POST_DIAGONALIZE
Option to re-diagonalize Hamiltonian in final CI space. This can be is useful to compute more roots.

• Type: bool

• Default: False

POST_ROOT
Number of roots to compute on post-diagonalization. For this option to be used, post-diagonalize must be true.

• Type: int

• Default: 1

PQ_FUNCTION
Option that selects the function of energy estimates per root and the expansion coefficients per root. This option is only
meaningful if more than one root is desired.

• Type: string

• Options: “MAX”, “AVERAGE”

• Default: “MAX”

Q_REFERENCE
Reference state type to be used when computing estimates of the energy difference between two states. The estimation
of the change in energy gap a determinant introduces can be done for all excited states with respect to the ground state
(GS), or with respect to the nearest, lower state.

• Type: string

• Options: “GS”, “ADJACENT”

• Default: “GS”

Q_REL
Rather than using the absolute energy to define the importance of a determinant, an energy gap between

two states can be used. This allows the determinant space to be constructed such that the energy difference
between to states is optimized.

• Type: bool

• Default: False

REF_ROOT
Option that selects the desired root that is used to build the determinant space. This option should only be used when
the EXCITED_ALGORITHM is set to “ROOT_SELECT”.

• Type: int

• Default: 0

3.2. ACI: Adaptive Configuration Interaction 39

Forte, Release 0.2.3

SPIN_TOL
For all of the algorithms in EX_ACI, roots are only used to build determinant spaces if their spin multiplicity is within
a given tolerance of the input spin multiplicity. This option defines that spin tolerance. NOTE: the multiplicity must be
defined within the EX_ACI scope. For poorly behaved systems, it may be useful to increase this to an arbitrarily large
value such that the lowest-energy multiplicities can be confirmed

• Type: double

• Default: 1.0e-4

3.3 MCSCF: Multi-Configuration Self-Consistent Field

3.3.1 Theory

The Multi-Configuration Self-Consistent Field (MCSCF) tries to optimize the orbitals and the CI coefficients for a
multi-configuration wave function:

|Ψ⟩ =

𝑁det∑︁
𝐼

𝑐𝐼 |Φ𝐼⟩,

where 𝑐𝐼 is the coefficient for Slater determinant Φ𝐼 . In MCSCF, the molecular orbitals (MOs) are generally separated
into three subsets: core (C, doubly occupied), active (A), and virtual (V, unoccuied). The set of determinants are
formed by arranging the number of active electrons (i.e., the total number of electrons minus twice the number of core
orbitals) in the active orbitals. There are many ways to pick the determinant basis, including complete active space
(CAS), restricted active space (RAS), generalized active space (GAS), and other selective configuration interaction
schemes (such as ACI).

For convenience, we first introduce the following convention for orbital indices: 𝑖, 𝑗 for core orbitals, 𝑡, 𝑢, 𝑣, 𝑤 for active
orbitals, and 𝑎, 𝑏 for virtual orbitals. General orbitals (core, active, or virtual) are denoted using indices 𝑝, 𝑞, 𝑟, 𝑠.

The MCSCF energy can be expressed as

𝐸 =

A∑︁
𝑡𝑢

𝑓 c𝑡𝑢𝐷𝑡𝑢 +
1

2

A∑︁
𝑡𝑢𝑣𝑤

(𝑡𝑢|𝑣𝑤)𝐷𝑡𝑢,𝑣𝑤 + 𝐸c + 𝐸nuc,

where 𝑓 c𝑝𝑞 = ℎ𝑝𝑞 +
∑︀C
𝑖 [2(𝑝𝑞|𝑖𝑖) − (𝑝𝑖|𝑖𝑞)] are the closed-shell Fock matrix elements and (𝑝𝑞|𝑟𝑠) are the MO two-

electron integrals in chemists’ notation. The term 𝐸c =
∑︀C
𝑗 (ℎ𝑗𝑗 + 𝑓 c𝑗𝑗) is the closed-shell energy and 𝐸nuc is the

nuclear repulsion energy. We have also used the 1- and 2-body reduced density matrices (RDMs) defined respectively
as 𝐷𝑡𝑢 =

∑︀
𝐼𝐽 𝑐𝐼𝑐𝐽⟨Φ𝐼 |�̂�𝑡𝑢|Φ𝐽⟩ and 𝐷𝑡𝑢,𝑣𝑤 =

∑︀
𝐼𝐽 𝑐𝐼𝑐𝐽⟨Φ𝐼 |�̂�𝑡𝑢,𝑣𝑤|Φ𝐽⟩, where the unitary group generators are

defined as �̂�𝑡𝑢 =
∑︀↑↓
𝜎 𝑎†𝑡𝜎𝑎𝑢𝜎

and �̂�𝑡𝑢,𝑣𝑤 =
∑︀↑↓
𝜎𝜏 𝑎

†
𝑡𝜎𝑎𝑢𝜎

𝑎†𝑣𝜏𝑎𝑤𝜏
. Moreover, we use the symmetrized 2-RDM in

the MCSCF energy expression such that it has the same 8-fold symmetry as the two-electron integrals: 𝐷𝑡𝑢,𝑣𝑤 =
1
2 (𝐷𝑡𝑢,𝑣𝑤 +𝐷𝑢𝑡,𝑣𝑤).

There are then two sets of parameters in MCSCF: 1) CI coefficients {𝑐𝐼 |𝐼 = 1, 2, . . . , 𝑁det}, and 2) MO coefficients
{𝐶𝜇𝑝|𝑝 = 1, 2, . . . , 𝑁MO} with |𝜑𝑝⟩ =

∑︀AO
𝜇 𝐶𝜇𝑝|𝜒𝜇⟩. The goal of MCSCF is then to optimize both sets of param-

eters to minimize the energy, subject to orthonormal molecular orbitals |𝜑new𝑝 ⟩ =
∑︀
𝑠 |𝜑old𝑠 ⟩𝑈𝑠𝑝, U = exp(R) with

R† = −R. It is then straightforward to see the two steps in MCSCF: CI optimization (for given orbitals) and orbital
optimization (for given RDMs).

40 Chapter 3. HOWTOs

Forte, Release 0.2.3

3.3.2 Implementation

In Forte, we implement the atomic-orbital-driven two-step MCSCF algorithm based on JK build. We largely follow
the article by Hohenstein et al. [J. Chem. Phys. 142, 224103 (2015)] with exceptions on the orbital diagonal Hessian
which can be found in Theor. Chem. Acc. 97, 88-95 (1997) (non-redundant rotaions) and J. Chem. Phys. 152, 074102
(2020) (active-active rotaions). The difference is that we improve the orbital optimization step via L-BFGS iterations
to obtain a better approxiamtion to the orbital Hessian. The optimization procedure is shown in the following figure:

All types of integrals available in Forte are supported for energy computations.

Note: External integrals read from a FCIDUMP file (CUSTOM) are supported, but their use in the current code is very
inefficient, which requires further optimization.

Besides MCSCF energies, we have also implement analytic MCSCF energy gradients. Frozen orbitals are allowed for
computing both the energy and gradients, although these frozen orbitals must come from canonical Hartree-Fock in
order to compute analytic gradients.

Warning: The density-fitted (DF, DISKDF) and Cholesky-decomposed (CHOLESKY) integrals are fully supported
for energy computations. However, there is a small discrepancy for gradients between analytic results and finite
difference. This is caused by the DF derivative integrals in Psi4.

Meanwhile, analytic gradient calculations are not available for FCIDUMP (CUSTOM) integrals.

3.3.3 Input Example

The following performs an MCSCF calculation on CO molecule. Specifically, this is a CASSCF(6,6)/cc-pCVDZ cal-
culation with 2 frozen-core orbitals.

import forte

molecule CO{
0 1
C

(continues on next page)

3.3. MCSCF: Multi-Configuration Self-Consistent Field 41

https://doi.org/10.1063/1.4921956
http://link.springer.com/10.1007/s002140050241
https://doi.org/10.1063/1.5142241
https://doi.org/10.1063/1.5142241

Forte, Release 0.2.3

(continued from previous page)

O 1 1.128
}

set {
basis cc-pcvdz
reference rhf
scf_type pk
maxiter 300
e_convergence 10
d_convergence 8
docc [5,0,1,1]

}

set forte {
job_type mcscf_two_step
frozen_docc [2,0,0,0]
frozen_uocc [0,0,0,0]
restricted_docc [2,0,0,0]
active [2,0,2,2]
e_convergence 8 # energy convergence of the FCI iterations
r_convergence 8 # residual convergence of the FCI iterations
casscf_e_convergence 8 # energy convergence of the MCSCF iterations
casscf_g_convergence 6 # gradient convergence of the MCSCF iterations
casscf_micro_maxiter 4 # do at least 4 micro iterations per macro iteration

}

Eforte = energy('forte')

Near the end of the output, we can find a summary of the MCSCF iterations:

==> MCSCF Iteration Summary <==

Energy CI Energy Orbital
------------------------------ ------------------------------

Iter. Total Energy Delta Total Energy Delta Orb. Grad. ␣
→˓Micro

→˓-
1 -112.799334478817 0.0000e+00 -112.835855509518 0.0000e+00 1.9581e-03 4
2 -112.843709831147 -4.4375e-02 -112.849267918030 -1.3412e-02 5.8096e-03 4
3 -112.867656057839 -2.3946e-02 -112.871626476542 -2.2359e-02 5.4580e-03 4
4 -112.871805690190 -4.1496e-03 -112.871829079776 -2.0260e-04 9.6326e-04 4
5 -112.871833833468 -2.8143e-05 -112.871834596898 -5.5171e-06 1.0716e-04 4
6 -112.871834848100 -1.0146e-06 -112.871834858812 -2.6191e-07 1.4395e-05 4
7 -112.871834862835 -1.4735e-08 -112.871834862936 -4.1231e-09 1.1799e-06 3
8 -112.871834862954 -1.1940e-10 -112.871834862958 -2.2439e-11 1.4635e-07 2

→˓-

The last column shows the number of micro iterations used in a given macro iteration.

To obtain the analytic energy gradients, just replace the last line of the above input to

42 Chapter 3. HOWTOs

Forte, Release 0.2.3

gradient('forte')

The output prints out all the components that contribute to the energy first derivatives:

-Nuclear Repulsion Energy 1st Derivatives:
Atom X Y Z
------ ----------------- ----------------- -----------------

1 0.000000000000 0.000000000000 10.563924863908
2 0.000000000000 0.000000000000 -10.563924863908

-Core Hamiltonian Gradient:
Atom X Y Z
------ ----------------- ----------------- -----------------

1 0.000000000000 0.000000000000 -25.266171481954
2 0.000000000000 0.000000000000 25.266171481954

-Lagrangian contribution to gradient:
Atom X Y Z
------ ----------------- ----------------- -----------------

1 0.000000000000 0.000000000000 0.763603330124
2 0.000000000000 0.000000000000 -0.763603330124

-Two-electron contribution to gradient:
Atom X Y Z
------ ----------------- ----------------- -----------------

1 0.000000000000 0.000000000000 13.964810830002
2 0.000000000000 0.000000000000 -13.964810830002

-Total gradient:
Atom X Y Z
------ ----------------- ----------------- -----------------

1 0.000000000000 0.000000000000 0.026167542081
2 0.000000000000 0.000000000000 -0.026167542081

The Total gradient can be compared with that from finite-difference calculations:

1 0.00000000000000 0.00000000000000 0.02616749349810
2 0.00000000000000 0.00000000000000 -0.02616749349810

obtained from input

set findif{
points 5

}
gradient('forte', dertype=0)

Here the difference between finite difference and analytic formalism is 4.8E-8, which is reasonable as our energy only
converges to 1.0E-8. Note that only the total gradient is available for finite-difference calculations.

The geometry optimization is invoked by

optimize('forte') # Psi4 optimization procedure

(continues on next page)

3.3. MCSCF: Multi-Configuration Self-Consistent Field 43

Forte, Release 0.2.3

(continued from previous page)

mol = psi4.core.get_active_molecule() # grab the optimized geoemtry
print(mol.to_string(dtype='psi4', units='angstrom')) # print geometry to screen

Assuming the initial geometry is close to the equilibrium, we can also pass the MCSCF converged orbitals of the initial
geometry as an initial orbital guess for subsequent geometries along the optimization steps

Ecas, ref_wfn = energy('forte', return_wfn=True) # energy at initial geometry
Eopt = optimize('forte', ref_wfn=ref_wfn) # Psi4 optimization procedure

mol = psi4.core.get_active_molecule() # grab optimized geometry
print(mol.to_string(dtype='psi4', units='angstrom')) # print geometry to screen

Similarly, we can also optimize geometries using finite difference technique:

Ecas, ref_wfn = energy('forte', return_wfn=True) # energy at initial geometry
Eopt = optimize('forte', ref_wfn=ref_wfn, dertype=0) # Psi4 optimization procedure

Warning: After optimization, the input ref_wfn no longer holds the data of the initial geometry!

Tip: We could use this code to perform FCI analytic energy gradients (and thus geometry optimizations). The trick
is to set all correalted orbitals as active. In test case casscf-opt-3, we optimize the geometry of HF molecule at the
FCI/3-21G level of theory with frozen 1s orbital of F. Note that frozen orbitals will be kept as they are in the original
geometry and therefore the final optimized geometry will be slightly different if a different starting geometry is used.

3.3.4 Options

Basic Options

CASSCF_MAXITER
The maximum number of macro iterations.

• Type: int

• Default: 100

CASSCF_MICRO_MAXITER
The maximum number of micro iterations.

• Type: int

• Default: 40

CASSCF_MICRO_MINITER
The minimum number of micro iterations.

• Type: int

• Default: 6

CASSCF_E_CONVERGENCE
The convergence criterion for the energy (two consecutive energies).

44 Chapter 3. HOWTOs

Forte, Release 0.2.3

• Type: double

• Default: 1.0e-8

CASSCF_G_CONVERGENCE
The convergence criterion for the orbital gradient (RMS of gradient vector). This value should be roughly in the same
order of magnitude as CASSCF_E_CONVERGENCE. For example, given the default energy convergence (1.0e-8), set
CASSCF_G_CONVERGENCE to 1.0e-7 – 1.0e-8 for a better convergence behavior.

• Type: double

• Default: 1.0e-7

CASSCF_MAX_ROTATION
The max value allowed in orbital update vector. If a value in the orbital update vector is greater than this number, the
update vector will be scaled by this number / max value.

• Type: double

• Default: 0.2

CASSCF_DIIS_START
The iteration number to start DIIS on orbital rotation matrix R. DIIS will not be used if this number is smaller than 1.

• Type: int

• Default: 15

CASSCF_DIIS_MIN_VEC
The minimum number of DIIS vectors allowed for DIIS extrapolation.

• Type: int

• Default: 3

CASSCF_DIIS_MAX_VEC
The maximum number of DIIS vectors, exceeding which the oldest vector will be discarded.

• Type: int

• Default: 8

CASSCF_DIIS_FREQ
How often to do a DIIS extrapolation. For example, 1 means do DIIS every iteration and 2 is for every other iteration,
etc.

• Type: int

• Default: 1

CASSCF_CI_SOLVER
Which active space solver to be used.

• Type: string

• Options: CAS, FCI, ACI, PCI

• Default: CAS

CASSCF_DEBUG_PRINTING
Whether to enable debug printing.

3.3. MCSCF: Multi-Configuration Self-Consistent Field 45

Forte, Release 0.2.3

• Type: Boolean

• Default: False

CASSCF_FINAL_ORBITAL
What type of orbitals to be used for redundant orbital pairs for a converged calculation.

• Type: string

• Options: CANONICAL, NATURAL, UNSPECIFIED

• Default: CANONICAL

CASSCF_NO_ORBOPT
Turn off orbital optimization procedure if true.

• Type: Boolean

• Default: False

CASSCF_DIE_IF_NOT_CONVERGED
Stop Forte if MCSCF did not converge.

• Type: Boolean

• Default: True

Expert Options

CASSCF_INTERNAL_ROT
Whether to enable pure internal (GASn-GASn) orbital rotations.

• Type: Boolean

• Default: False

CASSCF_ZERO_ROT
Zero the optimization between orbital pairs. Format: [[irrep1, mo1, mo2], [irrep1, mo3, mo4], . . .] where irreps are
0-based, while MO indices are 1-based and relative within the irrep. For example, zeroing the mixing of 3A1 and 2A1
translates to [[0, 3, 2]].

• Type: array

• Default: No Default

CASSCF_ACTIVE_FROZEN_ORBITAL
A list of active orbitals to be frozen in the casscf optimization. Active orbitals contain all GAS1, GAS2, . . . , GAS6
orbitals. Orbital indices are zero-based and in Pitzer ordering. For example, GAS1 [1,0,0,1]; GAS2 [1,2,2,1];
CASSCF_ACTIVE_FROZEN_ORBITAL [2,6] means we freeze the first A2 orbital in GAS2 and the B2 orbital in
GAS1. This option is useful when doing core-excited state computations.

• Type: array

• Default: No Default

46 Chapter 3. HOWTOs

Forte, Release 0.2.3

CPSCF Options

CPSCF_MAXITER
Max number of iterations for solving coupled perturbed SCF equation

• Type: int

• Default: 50

CPSCF_CONVERGENCE
Convergence criterion for the CP-SCF equation

• Type: double

• Default: 1.0e-8

3.4 Driven Similarity Renormalization Group

Important: Any publication utilizing the DSRG code should acknowledge the following articles:

• F. A. Evangelista, J. Chem. Phys. 141, 054109 (2014).

• C. Li and F. A. Evangelista, Annu. Rev. Phys. Chem. 70, 245-273 (2019).

Depending on the features used, the user is encouraged to cite the corresponding articles listed here.

Caution: The examples used in this manual are written based on the spin-integrated code. To make the spin-
integrated code work properly for molecules with even multiplicities [S * (S + 1) = 2, 4, 6, . . .], the user should
specify the following keyword:

spin_avg_density true # use spin-summed reduced density matrices

to invoke the use of spin-free densities. The spin-free densities are computed by averaging all spin multiplets (e.g.,
Ms = 1/2 or -1/2 for doublets). For odd multiplicities [S * (S + 1) = 1, 3, 5, . . .], there is no need to do so. Please
check test case dsrg-mrpt2-13 for details.

Note: The latest version of Forte also has the spin-adapted MR-DSRG implemented for DSRG-MRPT2, DSRG-
MRPT3, and MR-LDSRG(2) (and its variants). To invoke the spin-adated implementation, the user needs to specify
the following keywords:

correlation_solver sa-mrdsrg # spin-adapted DSRG computation
corr_level ldsrg2 # spin-adapted theories: PT2, PT3, LDSRG2_QC, LDSRG2

The spin-adapted version should be at least 2-3 times faster than the corresponding spin-integrated code, and it also
saves some memory. Note that the spin-adapted code will ignore the spin_avg_density keyword and always treat it
as true.

3.4. Driven Similarity Renormalization Group 47

Forte, Release 0.2.3

3.4.1 Basics of DSRG

1. Overview of DSRG Theory

Driven similarity renormalization group (DSRG) is a numerically robust approach to treat dynamical (or weak) electron
correlation. Specifically, the DSRG performs a continuous similarity transformation of the bare Born-Oppenheimer
Hamiltonian �̂� ,

�̄�(𝑠) = 𝑒−𝑆(𝑠)�̂�𝑒𝑆(𝑠),

where 𝑠 is the flow parameter defined in the range [0,+∞). The value of 𝑠 controls the amount of dynamical correlation
included in �̄�(𝑠), with 𝑠 = 0 corresponding to no correlation included. The operator 𝑆 can be any operator in general.
For example, if 𝑆 = 𝑇 is the coupled cluster substitution operator, the DSRG �̄�(𝑠) is identical to coupled-cluster (CC)
similarity transformed Hamiltonian except for the 𝑠 dependence. See Table I for different flavours of 𝑆.

Table 1: Table I. Connections of DSRG to CC theories when using dif-
ferent types of 𝑆.

𝑆 Explanation CC Theories
𝑇 cluster operator traditional CC
𝐴 𝐴 = 𝑇 − 𝑇 † unitary CC, CT
�̂� general operator generalized CC

In the current implementation, we choose the anti-hermitian parametrization, i.e., 𝑆 = 𝐴.

The DSRG transformed Hamiltonian �̄�(𝑠) contains many-body (> 2-body) interactions in general. We can express it
as

�̄� = ℎ̄0 + ℎ̄𝑝𝑞{𝑎𝑞𝑝}+
1

4
ℎ̄𝑝𝑞𝑟𝑠{𝑎𝑟𝑠𝑝𝑞}+

1

36
ℎ̄𝑝𝑞𝑟𝑠𝑡𝑢{𝑎𝑠𝑡𝑢𝑝𝑞𝑟}+ ...

where 𝑎𝑝𝑞...𝑟𝑠... = 𝑎†𝑝𝑎
†
𝑞 . . . 𝑎𝑠𝑎𝑟 is a string of creation and annihilation operators and {·} represents normal-ordered

operators. In particular, we use Mukherjee-Kutzelnigg normal ordering [see J. Chem. Phys. 107, 432 (1997)] with
respect to a general multideterminantal reference Ψ0. Here we also assume summations over repeated indices for
brevity. Also note that ℎ̄0 is the energy dressed by dynamical correlation effects.

In DSRG, we require the off-diagonal components of �̄� gradually go to zero (from �̂�) as 𝑠 grows (from 0). By off-
diagonal components, we mean ℎ̄𝑖𝑗...𝑎𝑏... and ℎ̄𝑎𝑏...𝑖𝑗... where 𝑖, 𝑗, . . . indicates hole orbitals and 𝑎, 𝑏, . . . labels particle orbitals.
There are in principle infinite numbers of ways to achieve this requirement. The current implementation chooses the
following parametrization,

ℎ̄𝑖𝑗...𝑎𝑏... = [ℎ̄𝑖𝑗...𝑎𝑏... + ∆𝑖𝑗...
𝑎𝑏...𝑡

𝑖𝑗...
𝑎𝑏...]𝑒

−𝑠(Δ𝑖𝑗...
𝑎𝑏...)

2

,

where ∆𝑖𝑗...
𝑎𝑏... = 𝜖𝑖 + 𝜖𝑗 + · · · − 𝜖𝑎− 𝜖𝑏− . . . is the Møller-Plesset denominator defined by orbital energies 𝜖𝑝 and 𝑡𝑖𝑗...𝑎𝑏...

are the cluster amplitudes. This equation is called the DSRG flow equation, which suggests a way how the off-diagonal
Hamiltonian components evolves as 𝑠 changes. We can now solve for the cluster amplitudes since �̄� is a function of 𝑇
using the Baker–Campbell–Hausdorff (BCH) formula.

Since we choose 𝑆 = 𝐴, the corresponding BCH expansion is thus non-terminating. Approximations have to be
introduced and different treatments to �̄� leads to various levels of DSRG theories. Generally, we can treat it either in
a perturbative or non-perturbative manner. For non-perturbative theories, the only widely tested scheme so far is the
recursive single commutator (RSC) approach, where every single commutator is truncated to contain at most two-body
contributions for a nested commutator. For example, a doubly nested commutator is computed as

1

2
[[�̂�, 𝐴], 𝐴] ≈ 1

2
[[�̂�, 𝐴]1,2, 𝐴]0,1,2,

48 Chapter 3. HOWTOs

Forte, Release 0.2.3

where 0, 1, 2 indicate scalar, 1-body, and 2-body contributions. We term the DSRG method that uses RSC as LD-
SRG(2).

Alternatively, we can perform a perturbative analysis on the approximated BCH equation of �̄� and obtain various
DSRG perturbation theories [e.g., 2nd-order (PT2) or 3rd-order (PT3)]. Note we use the RSC approximated BCH
equation for computational cost considerations. As such, the implemented DSRG-PT3 is not a formally complete PT3,
but a numerically efficient companion theory to the LDSRG(2) method.

To conclude this subsection, we discuss the computational cost and current implementation limit, which are summarized
in Table II .

Table 2: Table II. Cost and maximum system size for the DSRG methods
implemented in Forte.

Method Computational Cost Conventional 2-el. integrals Density-fitted/Cholesky (DF/CD)
PT2 one-shot 𝑁5 ∼ 250 basis functions ∼ 1800 basis functions
PT3 one-shot 𝑁6 ∼ 250 basis functions ∼ 700 basis functions
LDSRG(2) iterative 𝑁6 ∼ 200 basis functions ∼ 550 basis functions

2. Input Examples

Minimal Example - DSRG-MPT2 energy of HF
Let us first see an example with minimal keywords. In particular, we compute the energy of hydrogen fluoride using
DSRG multireference (MR) PT2 using a complete active space self-consistent field (CASSCF) reference.

import forte

molecule mol{
0 1
F
H 1 R

}
mol.R = 1.50 # this is a neat way to specify H-F bond lengths

set globals{
basis cc-pvdz
reference rhf
scf_type pk
d_convergence 8
e_convergence 10
restricted_docc [2,0,1,1]
active [2,0,0,0]

}

set forte{
active_space_solver fci
correlation_solver dsrg-mrpt2
dsrg_s 0.5
frozen_docc [1,0,0,0]
restricted_docc [1,0,1,1]
active [2,0,0,0]

}

(continues on next page)

3.4. Driven Similarity Renormalization Group 49

Forte, Release 0.2.3

(continued from previous page)

Emcscf, wfn = energy('casscf', return_wfn=True)
energy('forte', ref_wfn=wfn)

There are three blocks in the input:

1. The molecule block specifies the geometry, charge, multiplicity, etc.

2. The second block specifies Psi4 options (see Psi4 manual for details).

3. The last block shows options specifically for Forte.

In this example, we use Psi4 to compute CASSCF reference. Psi4 provides the freedom to specify the core (a.k.a.
internal) and active orbitals using RESTRICTED_DOCC and ACTIVE options, but it is generally the user’s responsibility
to select and verify correct orbital ordering. The RESTRICTED_DOCC array [2,0,1,1] indicates two 𝑎1, zero 𝑎2, one
𝑏1, and one 𝑏2 doubly occupied orbitals. There are four irreps because the computation is performed using 𝐶2𝑣 point
group symmetry.

The computation begins with the execution of Psi4’s CASSCF code, invoked by Emcscf, wfn = energy('casscf',
return_wfn=True). This function call returns the energy and CASSCF wave function. In the second call to the energy
function, energy('forte', ref_wfn=wfn), we ask the Psi4 driver to call Forte. The wave function stored in wfn
will is passed to Forte via argument ref_wfn.

Forte generally recomputes the reference using the provided wave function parameters. To perform a DSRG computa-
tion, the user is expected to specify the following keywords:

• ACTIVE_SPACE_SOLVER: Here we use FCI to perform a CAS configuration interaction (CASCI), i.e., a full CI
within the active orbitals.

• CORRELATION_SOLVER: This option determines which code to run. The four well-tested DSRG solvers are:
DSRG-MRPT2, THREE-DSRG-MRPT2, DSRG-MRPT3, and MRDSRG. The density-fitted DSRG-MRPT2 is imple-
mented in THREE-DSRG-MRPT2. The MRDSRG is mainly designed to perform MR-LDSRG(2) computations.

• DSRG_S: This keyword specifies the DSRG flow parameter in a.u. For general MR-DSRG computations, the user
should change the value to 0.5 ∼ 1.5 a.u. Most of our computations in References are performed using 0.5 or
1.0 a.u.

Caution: By default, DSRG_S is set to 0.5 a.u. The user should always set this keyword by hand! Non-
perturbative methods may not converge for large values of flow parameter.

• Orbital spaces: Here we also specify frozen core orbitals besides core and active orbitals. Note that in this
example, we optimize the 1s-like core orbital in CASSCF but later freeze it in the DSRG treatments of dynamical
correlation. Details regarding to orbital spaces can be found in the section sec:mospaceinfo.

Tip: To perform a single-reference (SR) DSRG computation, set the array ACTIVE to zero. In the above example,
the SR DSRG-PT2 energy can be obtained by modifying RESTRICTED_DOCC to [2,0,1,1] and ACTIVE to [0,
0,0,0]. The MP2 energy can be reproduced if we further change DSRG_S to very large values (e.g., 108 a.u.).

The output of the above example consists of several parts:

• The active-space FCI computation:

==> Root No. 0 <==

20 -0.95086442
02 0.29288371

(continues on next page)

50 Chapter 3. HOWTOs

Forte, Release 0.2.3

(continued from previous page)

Total Energy: -99.939316382616340

==> Energy Summary <==

Multi. Irrep. No. Energy

1 A1 0 -99.939316382616

Forte prints out the largest determinants in the CASCI wave function and its energy. Since we read orbitals from
Psi4’s CASSCF, this energy should coincide with Psi4’s CASSCF energy.

• The computation of 1-, 2-, and 3-body reduced density matrices (RDMs) of the CASCI reference:

==> Computing RDMs for Root No. 0 <==

Timing for 1-RDM: 0.000 s
Timing for 2-RDM: 0.000 s
Timing for 3-RDM: 0.000 s

• Canonicalization of the orbitals:

==> Checking Fock Matrix Diagonal Blocks <==

Off-Diag. Elements Max 2-Norm
--
Fa actv 0.0000000000 0.0000000000
Fb actv 0.0000000000 0.0000000000
--
Fa core 0.0000000000 0.0000000000
Fb core 0.0000000000 0.0000000000
--
Fa virt 0.0000000000 0.0000000000
Fb virt 0.0000000000 0.0000000000
--

Orbitals are already semicanonicalized.

All DSRG procedures require the orbitals to be canonicalized. In this basis, the core, active, and virtual diagonal
blocks of the average Fock matrix are diagonal. Forte will test if the orbitals provided are canonical, and if not it
will perform a canonicalization. In this example, since Psi4’s CASSCF orbitals are already canonical, Forte just
tests the Fock matrix but does not perform an actual orbital rotation.

• Computation of the DSRG-MRPT2 energy:

– The output first prints out a summary of several largest amplitudes and possible intruders:

==> Excitation Amplitudes Summary <==

Active Indices: 1 2
... # ommit output for T1 alpha, T1 beta, T2 alpha-alpha, T2 beta-beta
Largest T2 amplitudes for spin case AB:

_ _ _ _ _ _
i j a b i j a b i j a b

(continues on next page)

3.4. Driven Similarity Renormalization Group 51

Forte, Release 0.2.3

(continued from previous page)

--
[1 2 2 4] 0.055381 [0 0 1 1]-0.053806 [1 2 1 4] 0.048919
[1 14 1 15] 0.047592 [1 10 1 11] 0.047592 [2 2 4 4]-0.044138
[2 14 1 15] 0.042704 [2 10 1 11] 0.042704 [1 10 1 12]-0.040985
[1 14 1 16]-0.040985 [2 2 1 4] 0.040794 [1 1 1 5] 0.040479
[1 14 2 15] 0.036004 [1 10 2 11] 0.036004 [2 10 2 12]-0.035392
--
Norm of T2AB vector: (nonzero elements: 1487) 0.369082532477979.
--

Here, {i, j} are generalized hole indices and {a, b} indicate generalized particle indices. The active indices
are given at the beginning of this printing block. Thus, the largest amplitude in this case [(1,2) -> (2,4)] is a
semi-internal excitation from (active, active) to (active, virtual). In general, semi-internal excitations tend
to be large and they are suppressed by DSRG.

– An energy summary is given later in the output:

==> DSRG-MRPT2 Energy Summary <==

E0 (reference) = -99.939316382616383
<[F, T1]> = -0.010942204196708
<[F, T2]> = 0.011247157867728
<[V, T1]> = 0.010183611834684
<[V, T2]> (C_2)^4 = -0.213259856801491
<[V, T2]> C_4 (C_2)^2 HH = 0.002713363798054
<[V, T2]> C_4 (C_2)^2 PP = 0.012979097502477
<[V, T2]> C_4 (C_2)^2 PH = 0.027792466274407
<[V, T2]> C_6 C_2 = -0.003202673882957
<[V, T2]> = -0.172977603109510
DSRG-MRPT2 correlation energy = -0.162489037603806
DSRG-MRPT2 total energy = -100.101805420220188
max(T1) = 0.097879100308377
max(T2) = 0.055380911136950
||T1|| = 0.170534584213259
||T2|| = 0.886328961933259

Here we show all contributions to the energy. Specifically, those labeled by C_4 involve 2-body
density cumulants, and those labeled by C_6 involve 3-body cumulants.

A More Advanced Example - MR-LDSRG(2) energy of HF
Here we look at a more advanced example of MR-LDSRG(2) using the same molecule.

We just show the input block of Forte here.
The remaining input is identical to the previous example.

set forte{
active_space_solver fci
correlation_solver mrdsrg
corr_level ldsrg2
frozen_docc [1,0,0,0]
restricted_docc [1,0,1,1]
active [2,0,0,0]
dsrg_s 0.5

(continues on next page)

52 Chapter 3. HOWTOs

Forte, Release 0.2.3

(continued from previous page)

e_convergence 1.0e-8
dsrg_rsc_threshold 1.0e-9
relax_ref iterate

}

Warning: This example takes a long time to finish (~3 min on a 2018 15-inch MacBook Pro).

There are several things to notice.

1. To run a MR-LDSRG(2) computation, we need to change CORRELATION_SOLVER to MRDSRG. Additionally, the
CORR_LEVEL should be specified as LDSRG2. There are other choices of CORR_LEVEL but they are mainly for
testing new ideas.

2. We specify the energy convergence keyword E_CONVERGENCE and the RSC threshold DSRG_RSC_THRESHOLD,
which controls the truncation of the recursive single commutator (RSC) approximation of the DSRG Hamilto-
nian. In general, the value of DSRG_RSC_THRESHOLD should be smaller than that of E_CONVERGENCE. Making
DSRG_RSC_THRESHOLD larger will stop the BCH series earlier and thus saves some time. It is OK to leave
DSRG_RSC_THRESHOLD as the default value, which is 10−12 a.u.

3. The MR-LDSRG(2) method includes reference relaxation effects. There are several variants of reference relax-
ation levels (see Theoretical Variants and Technical Details). Here we use the fully relaxed version, which is
done by setting RELAX_REF to ITERATE.

Note: The reference relaxation procedure is performed in a tick-tock way (see Theoretical Variants and Technical De-
tails), by alternating the solution of the DSRG amplitude equations and the diagonalization of the DSRG Hamiltonian.
This procedure may not monotonically converge and is potentially numerically unstable. We therefore suggest using
a moderate energy threshold (≥ 10−8 a.u.) for the iterative reference relaxation, which is controlled by the option
RELAX_E_CONVERGENCE.

For a given reference wave function, the output prints out a summary of:

1. The iterations for solving the amplitudes, where each step involves building a DSRG transformed Hamiltonian.

2. The MR-LDSRG(2) energy:

==> MR-LDSRG(2) Energy Summary <==

E0 (reference) = -99.939316382616383
MR-LDSRG(2) correlation energy = -0.171613035562048
MR-LDSRG(2) total energy = -100.110929418178429

3. The MR-LDSRG(2) converged amplitudes:

==> Final Excitation Amplitudes Summary <==

Active Indices: 1 2
... # ommit output for T1 alpha, T1 beta, T2 alpha-alpha, T2 beta-beta
Largest T2 amplitudes for spin case AB:

_ _ _ _ _ _
i j a b i j a b i j a b

--
[0 0 1 1]-0.060059 [1 2 2 4] 0.046578 [1 10 1 11] 0.039502

(continues on next page)

3.4. Driven Similarity Renormalization Group 53

Forte, Release 0.2.3

(continued from previous page)

[1 14 1 15] 0.039502 [0 0 1 2]-0.038678 [1 1 1 5] 0.037546
[2 2 4 4]-0.033871 [1 2 1 4] 0.033125 [1 14 2 15] 0.032868
[1 10 2 11] 0.032868 [1 10 1 12]-0.032602 [1 14 1 16]-0.032602
[14 14 15 15]-0.030255 [10 10 11 11]-0.030255 [2 14 1 15] 0.029241
--
Norm of T2AB vector: (nonzero elements: 1487) 0.330204946109119.
--

At the end of the computation, Forte prints a summary of the energy during the reference relaxation iterations:

=> MRDSRG Reference Relaxation Energy Summary <=

Fixed Ref. (a.u.) Relaxed Ref. (a.u.)
----------------------------------- -----------------------------------

Iter. Total Energy Delta Total Energy Delta

1 -100.110929418178 (a) -1.001e+02 -100.114343552853 (b) -1.001e+02
2 -100.113565563124 (c) -2.636e-03 -100.113571036112 7.725e-04
3 -100.113534597590 3.097e-05 -100.113534603824 3.643e-05
4 -100.113533334887 1.263e-06 -100.113533334895 1.269e-06
5 -100.113533290863 4.402e-08 -100.113533290864 4.403e-08
6 -100.113533289341 1.522e-09 -100.113533289341 (d) 1.522e-09

Let us introduce the nomenclature for reference relaxation.

Name Example Value Description

a) Unrelaxed
-100.110929418178 1st iter.; fixed CASCI ref.

b) Partially Relaxed
-100.114343552853 1st iter.; relaxed CASCI ref.

c) Relaxed
-100.113565563124 2nd iter.; fixed ref.

d) Fully Relaxed
-100.113533289341 last iter.; relaxed ref.

The unrelaxed energy is a diagonalize-then-perturb scheme, while the partially relaxed energy corresponds
to a diagonalize-then-perturb-then-diagonalize method. In this example, the fully relaxed energy is well
reproduced by the relaxed energy with a small error (< 10−4 a.u.).

Other Examples
There are plenty of examples in the tests/method folder. A complete list of the DSRG test cases can be found here.

54 Chapter 3. HOWTOs

Forte, Release 0.2.3

3. General DSRG Options

CORR_LEVEL
Correlation level of MR-DSRG.

• Type: string

• Options: PT2, PT3, LDSRG2, LDSRG2_QC, LSRG2, SRG_PT2, QDSRG2

• Default: PT2

DSRG_S
The value of the flow parameter 𝑠.

• Type: double

• Default: 0.5

DSRG_MAXITER
Max iterations for MR-DSRG amplitudes update.

• Type: integer

• Default: 50

DSRG_RSC_NCOMM
The maximum number of commutators in the recursive single commutator approximation to the BCH formula.

• Type: integer

• Default: 20

DSRG_RSC_THRESHOLD
The threshold of considering the BCH expansion converged based on the recursive single commutator approximation.

• Type: double

• Default: 1.0e-12

R_CONVERGENCE
The convergence criteria for the amplitudes.

• Type: double

• Default: 1.0e-6

NTAMP
The number of largest amplitudes printed in the amplitudes summary.

• Type: integer

• Default: 15

INTRUDER_TAMP
A threshold for amplitudes that are considered as intruders for printing.

• Type: double

• Default: 0.1

3.4. Driven Similarity Renormalization Group 55

Forte, Release 0.2.3

TAYLOR_THRESHOLD
A threshold for small energy denominators that are computed using Taylor expansion (instead of direct reciprocal of the
energy denominator). For example, 3 means Taylor expansion is performed if denominators are smaller than 1.0e-3.

• Type: integer

• Default: 3

DSRG_DIIS_START
The minimum iteration to start storing DIIS vectors for MRDSRG amplitudes. Any number smaller than 1 will turn
off the DIIS procedure.

• Type: int

• Default: 2

DSRG_DIIS_FREQ
How often to do a DIIS extrapolation in MRDSRG iterations. For example, 1 means do DIIS every iteration and 2 is
for every other iteration, etc.

• Type: int

• Default: 1

DSRG_DIIS_MIN_VEC
Minimum number of error vectors stored for DIIS extrapolation in MRDSRG.

• Type: int

• Default: 3

DSRG_DIIS_MAX_VEC
Maximum number of error vectors stored for DIIS extrapolation in MRDSRG.

• Type: int

• Default: 8

3.4.2 Theoretical Variants and Technical Details

1. Reference Relaxation

For MR methods, it is necessary to consider reference relaxation effects due to coupling between static and dynamical
correlation. This can be introduced by requiring the reference wave function, Ψ0 to be the eigenfunction of �̄�(𝑠). The
current implementation uses the uncoupled two-step (tick-tock) approach, where the DSRG transformed Hamiltonian
�̄�(𝑠) is built using the RDMs of a given Ψ0, and then diagonalize �̄�(𝑠) within the active space yielding a new Ψ0.
These two steps can be iteratively performed until convergence.

Denoting the 𝑖-th iteration of reference relaxation by superscript [𝑖], the variants of reference relaxation procedure
introduced above can be expressed as

Name Energy Expression
Unrelaxed ⟨Ψ[0]

0 |�̄� [0](𝑠)|Ψ[0]
0 ⟩

Partially Relaxed ⟨Ψ[1]
0 (𝑠)|�̄� [0](𝑠)|Ψ[1]

0 (𝑠)⟩
Relaxed ⟨Ψ[1]

0 (𝑠)|�̄� [1](𝑠)|Ψ[1]
0 (𝑠)⟩

Fully Relaxed ⟨Ψ[𝑛]
0 (𝑠)|�̄� [𝑛](𝑠)|Ψ[𝑛]

0 (𝑠)⟩

56 Chapter 3. HOWTOs

Forte, Release 0.2.3

where [0] uses the original reference wave function and [𝑛] suggests converged results.

By default, MRDSRG only performs an unrelaxed computation. To obtain partially relaxed energy, the user needs to
change RELAX_REF to ONCE. For relaxed energy, RELAX_REF should be switched to TWICE. For fully relaxed energy,
RELAX_REF should be set to ITERATE.

For other DSRG solvers aimed for perturbation theories, only the unrelaxed and partially relaxed energies are available.
In the literature, we term the partially relaxed version as the default DSRG-MRPT, while the unrelaxed version as
uDSRG-MRPT.

Tip: These energies can be conveniently obtained in the input file. For example, Eu = variable("UNRELAXED
ENERGY") puts unrelaxed energy to a variable Eu. The avaible keys are "UNRELAXED ENERGY", PARTIALLY RELAXED
ENERGY, "RELAXED ENERGY", and "FULLY RELAXED ENERGY".

2. Orbital Rotations

The DSRG equations are defined in the semicanonical orbital basis, and thus it is not generally orbital invariant. All
DSRG solvers, except for THREE-DSRG-MRPT2, automatically rotates the integrals to semicanonical basis even if the
input integrals are not canonicalized (if keyword SEMI_CANONICAL is set to FALSE). However, it is recommended a
careful inspection to the printings regarding to the semicanonical orbitals. An example printing of orbital canonical-
ization can be found in Minimal Example.

3. Sequential Transformation

In the sequential transformation ansatz, we compute �̄� sequentially as

�̄�(𝑠) = 𝑒−𝐴𝑛 · · · 𝑒−𝐴2𝑒−𝐴1�̂�𝑒𝐴1𝑒𝐴2 · · · 𝑒𝐴𝑛

instead of the traditional approach:

�̄�(𝑠) = 𝑒−𝐴1−𝐴2−···−𝐴𝑛�̂�𝑒𝐴1+𝐴2+···+𝐴𝑛

For clarity, we ignore the indication of 𝑠 dependence on �̄�(𝑠) and 𝐴(𝑠). In the limit of 𝑠 → ∞ and no truncation of
𝐴(𝑠), both the traditional and sequential MR-DSRG methods can approach the full configuration interaction limit. The
difference between their truncated results are also usually small.

In the sequential approach, 𝑒−𝐴1�̂�𝑒𝐴1 is computed as a unitary transformation to the bare Hamiltonian, which is very
efficient when combined with integral factorization techniques (scaling reduction).

4. Non-Interacting Virtual Orbital Approximation

In the non-interacting virtual orbital (NIVO) approximation, we neglect the operator components of all rank-4 inter-
mediate tensors and �̄� with three or more virtual orbital indices (VVVV, VCVV, VVVA, etc.). Consequently,
the number of elements in the intermediates are reduced from 𝒪(𝑁4) to 𝒪(𝑁2𝑁2

H), which is of similar size to the
𝑇2 amplitudes. As such, the memory requirement of MR-LDSRG(2) is significantly reduced when we apply NIVO
approximation and combine with integral factorization techniques with a batched algorithm for tensor contractions.

Since much less number of tensor elements are involved, NIVO approximation dramatically reduces computation time.
However, the overall time scaling of MR-LDSRG(2) remain unchanged (prefactor reduction). The error introduced by
the NIVO approximation is usually negligible.

3.4. Driven Similarity Renormalization Group 57

Forte, Release 0.2.3

Note: If conventional two-electron integrals are used, NIVO starts from the bare Hamiltonian term (i.e., �̂� and all the
commutators in the BCH expansion of �̄� are approximated). For DF or CD intregrals, however, NIVO will start from
the first commutator [�̂�, 𝐴].

5. Zeroth-order Hamiltonian of DSRG-MRPT2 in MRDSRG Class

DSRG-MRPT2 is also implemented in the MRDSRG class for testing other zeroth-order Hamiltonian. The general
equation for all choices is to compute the summed second-order Hamiltonian:

�̄� [2] = �̂� + [�̂�, 𝐴(1)] + [�̂�(0), 𝐴(2)] +
1

2
[[�̂�(0), 𝐴(1)], 𝐴(1)]

where for brevity the (𝑠) notation is ignored and the superscripts of parentheses indicate the orders of perturbation. We
have implemented the following choices for the zeroth-order Hamiltonian.

Diagonal Fock operator (Fdiag)
This choice contains the three diagonal blocks of the Fock matrix, that is, core-core, active-active, and
virtual-virtual. Due to its simplicity, �̄� [2] can be obtained in a non-iterative manner in the semicanonical
basis.

Fock operator (Ffull)
This choice contains all the blocks of the Fock matrix. Since Fock matrix contains non-diagonal contri-
butions, [�̂�(0), 𝐴(2)] can contribute to the energy. As such, both first- and second-order amplitudes are
solved iteratively.

Dyall Hamiltonian (Fdiag_Vactv)
This choice contains the diagonal Fock matrix and the part of V labeled only by active indices. We solve
the first-order amplitudes iteratively. However, [�̂�(0), 𝐴] will neither contribute to the energy nor the active
part of the �̄� [2].

Fink Hamiltonian (Fdiag_Vdiag)
This choice contains all the blocks of Dyall Hamiltonian plus other parts of V that do not change the
excitation level. For example, these additional blocks include: cccc, aaaa, vvvv, caca, caac, acac, acca,
cvcv, cvvc, vcvc, vccv, avav, avva, vava, and vaav. The computation procedure is similar to that of Dyall
Hamiltonian.

To use different types of zeroth-order Hamiltonian, the following options are needed

correlation_solver mrdsrg
corr_level pt2
dsrg_pt2_h0th Ffull

Warning: The implementation of DSRG-MRPT2 in correlation_solver mrdsrg is different from the one
in correlation_solver dsrg-mrpt2. For the latter, the �̂�(0) is assumed being Fdiag and diagonal such that
[�̂�(0), 𝐴(1)] can be written in a compact form using semicanonical orbital energies. For mrdsrg, [�̂�(0), 𝐴(1)] is
evaluated without any assumption to the form of �̂�(0). These two approaches are equivalent for DSRG based on a
CASCI reference.

However, they will give different energies when there are multiple GAS spaces (In DSRG, all GAS orbitals are
treated as ACTIVE). In this case, semicanonical orbitals are defined as those that make the diagonal blocks of
the Fock matrix diagonal: core-core, virtual-virtual, GAS1-GAS1, GAS2-GAS2, . . . , GAS6-GAS6. Then it is

58 Chapter 3. HOWTOs

Forte, Release 0.2.3

equivalent to say that dsrg-mrpt2 uses all the diagonal blocks of the Fock matrix as zeroth-order Hamiltonian. In
order to correctly treat the GAS 𝑚 - GAS 𝑛 (𝑚 ̸= 𝑛) part of Fock matrix as first-order Hamiltonian, one need to
invoke internal excitations (i.e., active-active excitations). Contrarily, mrdsrg takes the entire active-active block
of Fock matrix as zeroth-order Hamiltonian, that is all blocks of GAS 𝑚 - GAS 𝑛 (𝑚,𝑛 ∈ {1, 2, · · · , 6}).

The spin-adapted code correlation_solver sa-mrdsrg with corr_level pt2 has the same behavior to the
dsrg-mrpt2 implementaion.

6. Restart iterative MRDSRG from a previous computation

The convergence of iterative MRDSRG [e.g., MR-LDSRG(2)] can be greatly improved if it starts from good initial
guesses (e.g., from loosely converged amplitudes or those of a near-by geometry). The amplitudes can be dumped to
the current working directory on disk for later use by turning on the DSRG_DUMP_AMPS keyword. These amplitudes
are stored in a binary file using Ambit (version later than 06/30/2020). For example, T1 amplitudes are stored as
forte.mrdsrg.spin.t1.bin for the spin-integrated code and forte.mrdsrg.adapted.t1.bin for spin-adapted
code (i.e., correlation_solver set to sa-mrdsrg). To read amplitudes in the current directory (must follow the same file
name convention), the user needs to invoke the DSRG_READ_AMPS keyword.

Note: In general, we should make sure the orbital phases are consistent between reading and writing amplitudes. For
example, the following shows part of the input to ensure the coefficient of the first AO being positive for all MOs.

...
Escf, wfn = energy('scf', return_wfn=True)

fix orbital phase
Ca = wfn.Ca().clone()
nirrep = wfn.nirrep()
rowdim, coldim = Ca.rowdim(), Ca.coldim()
for h in range(nirrep):

for i in range(coldim[h]):
v = Ca.get(h, 0, i)
if v < 0:

for j in range(rowdim[h]):
Ca.set(h, j, i, -1.0 * Ca.get(h, j, i))

wfn.Ca().copy(Ca)

energy('forte', ref_wfn=wfn)

For reference relaxation, initial amplitudes are obtained from the previous converged values by default. To turn this
feature off (not recommended), please set DSRG_RESTART_AMPS to False.

3.4. Driven Similarity Renormalization Group 59

Forte, Release 0.2.3

7. Examples

Here we slightly modify the more advanced example in General DSRG Examples to adopt the sequential transformation
and NIVO approximation.

We just show the input block of Forte here.

set forte{
active_space_solver fci
correlation_solver mrdsrg
corr_level ldsrg2
frozen_docc [1,0,0,0]
restricted_docc [1,0,1,1]
active [2,0,0,0]
dsrg_s 0.5
e_convergence 1.0e-8
dsrg_rsc_threshold 1.0e-9
relax_ref iterate
dsrg_nivo true
dsrg_hbar_seq true

}

Note: Since the test case is very small, invoking these two keywords does not make the computation faster. A
significant speed improvement can be observed for a decent amout of basis functions (∼ 100).

8. Related Options

RELAX_REF
Different approaches for MR-DSRG reference relaxation.

• Type: string

• Options: NONE, ONCE, TWICE, ITERATE

• Default: NONE

RELAX_E_CONVERGENCE
The energy convergence criteria for MR-DSRG reference relaxation.

• Type: double

• Default: 1.0e-8

MAXITER_RELAX_REF
Max macro iterations for MR-DSRG reference relaxation.

• Type: integer

• Default: 15

DSRG_DUMP_RELAXED_ENERGIES
Dump the energies after each reference relaxation step to JSON. The energies include all computed states and the
averaged DSRG “Fixed” and “Relaxed” energies for every reference relaxation step.

• Type: Boolean

60 Chapter 3. HOWTOs

Forte, Release 0.2.3

• Default: False

DSRG_RESTART_AMPS
Use converged amplitudes from the previous step as initial guesses of the current amplitudes.

• Type: Boolean

• Default: True

SEMI_CANONICAL
Semicanonicalize orbitals after solving the active-space eigenvalue problem.

• Type: Boolean

• Default: True

DSRG_HBAR_SEQ
Apply the sequential transformation algorithm in evaluating the transformed Hamiltonian �̄�(𝑠), i.e.,

�̄�(𝑠) = 𝑒−𝐴𝑛(𝑠) · · · 𝑒−𝐴2(𝑠)𝑒−𝐴1(𝑠)�̂�𝑒𝐴1(𝑠)𝑒𝐴2(𝑠) · · · 𝑒𝐴𝑛(𝑠).

• Type: Boolean

• Default: False

DSRG_NIVO
Apply non-interacting virtual orbital (NIVO) approximation in evaluating the transformed Hamiltonian.

• Type: Boolean

• Default: False

DSRG_PT2_H0TH
The zeroth-order Hamiltonian used in the MRDSRG code for computing DSRG-MRPT2 energy.

• Type: string

• Options: FDIAG, FFULL, FDIAG_VACTV, FDIAG_VDIAG

• Default: FDIAG

DSRG_DUMP_AMPS
Dump amplitudes to the current directory for a MRDSRG method. File names for T1 and T2 amplitudes are forte.
mrdsrg.CODE.t1.bin and forte.mrdsrg.CODE.t2.bin, respectively. Here, CODE will be adapted if using the
spin-adapted implementation, while spin if using the spin-integrated code.

• Type: Boolean

• Default: False

DSRG_READ_AMPS
Read amplitudes from the current directory for iterative MRDSRG methods. File format and content should match
those with DSRG_DUMP_AMPS.

• Type: Boolean

• Default: False

3.4. Driven Similarity Renormalization Group 61

Forte, Release 0.2.3

3.4.3 Density Fitted (DF) and Cholesky Decomposition (CD) Implementations

1. Theory

Integral factorization, as it suggests, factorizes the two-electron integrals into contractions of low-rank tensors. In
particular, we use density fitting (DF) or Cholesky decomposition (CD) technique to express two-electron integrals as

⟨𝑖𝑗||𝑎𝑏⟩ =

𝑁aux∑︁
𝑄

(𝐵𝑄𝑖𝑎𝐵
𝑄
𝑗𝑏 −𝐵

𝑄
𝑖𝑏𝐵

𝑄
𝑗𝑎)

where 𝑄 runs over auxiliary indices. Note that we use physicists’ notation here but the DF/CD literature use chemist
notation.

The main difference between DF and CD is how the 𝐵 tensor is formed. In DF, the 𝐵 tensor is defined as

𝐵𝑄𝑝𝑞 =

𝑁aux∑︁
𝑃

(𝑝𝑞|𝑃)(𝑃 |𝑄)−1/2.

In the CD approach, the 𝐵 tensor is formed by performing a pivoted incomplete Cholesky decomposition of the 2-
electron integrals. The accuracy of this decomposition is determined by a user defined tolerance, which directly deter-
mines the accuracy of the 2-electron integrals.

2. Limitations

There are several limitations of the current implementation.

We store the entire three-index integrals in memory by default. Consequently, we can treat about 1000 basis functions.
For larger systems, please use the DiskDF keyword where these integrals are loaded to memory only when necessary.
In general, we can treat about 2000 basis functions (with DiskDF) using DSRG-MRPT2.

Density fitting is more suited to spin-adapted equations while the current code uses spin-integrated equations.

We have a more optimized code of DF-DSRG-MRPT2. The batching algorithms of DSRG-MRPT3 (manually tuned)
and MR-LDSRG(2) (Ambit) are currently not ideal.

3. Examples

Tip: For DSRG-MRPT3 and MR-LDSRG(2), DF/CD will automatically turn on if INT_TYPE is set to DF, CD, or
DISKDF. For DSRG-MRPT2 computations, please set the CORRELATION_SOLVER keyword to THREE-DSRG-MRPT2
besides the INT_TYPE option.

The following input performs a DF-DSRG-MRPT2 calculation on nitrogen molecule. This example is modified from
the df-dsrg-mrpt2-4 test case.

import forte

memory 500 mb

molecule N2{
0 1
N
N 1 R

(continues on next page)

62 Chapter 3. HOWTOs

Forte, Release 0.2.3

(continued from previous page)

R = 1.1
}

set globals{
reference rhf
basis cc-pvdz
scf_type df
df_basis_mp2 cc-pvdz-ri
df_basis_scf cc-pvdz-jkfit
d_convergence 8
e_convergence 10

}

set forte {
active_space_solver cas
int_type df
restricted_docc [2,0,0,0,0,2,0,0]
active [1,0,1,1,0,1,1,1]
correlation_solver three-dsrg-mrpt2
dsrg_s 1.0

}

Escf, wfn = energy('scf', return_wfn=True)
energy('forte', ref_wfn=wfn)

To perform a DF computation, we need to specify the following options:

1. Psi4 options: SCF_TYPE, DF_BASIS_SCF, DF_BASIS_MP2

Warning: In test case df-dsrg-mrpt2-4, SCF_TYPE is specified to PK, which is incorrect for a real computation.

2. Forte options: CORRELATION_SOLVER, INT_TYPE

Attention: Here we use different basis sets for DF_BASIS_SCF and DF_BASIS_MP2. There is no consensus on
what basis sets should be used for MR computations. However, there is one caveat of using inconsistent DF basis
sets in Forte due to orbital canonicalization: Frozen orbitals are left unchanged (i.e., canonical for DF_BASIS_SCF)
while DSRG (and orbital canonicalization) only reads DF_BASIS_MP2. This inconsistency leads to slight deviations
to the frozen-core energies (< 10−4 a.u.) comparing to using identical DF basis sets.

The output produced by this input:

==> DSRG-MRPT2 (DF/CD) Energy Summary <==

E0 (reference) = -109.023295547673101
<[F, T1]> = -0.000031933175984
<[F, T2]> = -0.000143067308999
<[V, T1]> = -0.000183596694872
<[V, T2]> C_4 (C_2)^2 HH = 0.003655752832132
<[V, T2]> C_4 (C_2)^2 PP = 0.015967613107776
<[V, T2]> C_4 (C_2)^2 PH = 0.017515091046864

(continues on next page)

3.4. Driven Similarity Renormalization Group 63

Forte, Release 0.2.3

(continued from previous page)

<[V, T2]> C_6 C_2 = -0.000194156963250
<[V, T2]> (C_2)^4 = -0.265179563137787
<[V, T2]> = -0.228235263114265
DSRG-MRPT2 correlation energy = -0.228593860294120
DSRG-MRPT2 total energy = -109.251889407967226
max(T1) = 0.002234583100143
||T1|| = 0.007061738508652

Note: THREE-DSRG-MRPT2 currently does not print a summary for the largest amplitudes.

To use Cholesky integrals, set INT_TYPE to CHOLESKY and specify CHOLESKY_TOLERANCE. For example, a CD equiv-
alence of the above example is

same molecule input ...

set globals{
reference rhf
basis cc-pvdz
scf_type cd # <=
cholesky_tolerance 5 # <=
d_convergence 8
e_convergence 10

}

set forte {
active_space_solver cas
int_type cholesky # <=
cholesky_tolerance 1.0e-5 # <=
restricted_docc [2,0,0,0,0,2,0,0]
active [1,0,1,1,0,1,1,1]
correlation_solver three-dsrg-mrpt2
dsrg_s 1.0

}

Escf, wfn = energy('scf', return_wfn=True)
energy('forte', ref_wfn=wfn)

The output energies are:

E0 (reference) = -109.021897967354022
DSRG-MRPT2 total energy = -109.250407455691658

The energies computed using conventional integrals are:

E0 (reference) = -109.021904986168678
DSRG-MRPT2 total energy = -109.250416722481461

The energy error of using CD integrals (threshold = 10−5 a.u.) is thus around ∼ 10−5 a.u.. In general, comparing to
conventional 4-index 2-electron integrals, the use of CD integrals yields energy errors to the same decimal points as
CHOLESKY_TOLERANCE.

64 Chapter 3. HOWTOs

Forte, Release 0.2.3

Caution: The cholesky algorithm, as currently written, does not allow applications to large systems (> 1000 basis
functions).

4. Related Options

For basic options of factorized integrals, please check sec:integrals.

CCVV_BATCH_NUMBER
Manually specify the number of batches for computing THREE-DSRG-MRPT2 energies. By default, the number of
batches are automatically computed using the remaining memory estimate.

• Type: integer

• Default: -1

3.4.4 MR-DSRG Approaches for Excited States

There are several MR-DSRG methods available for computing excited states.

Warning: The current only supports SA-DSRG due to the revamp of Forte structure. MS-, XMS-, DWMS-DSRG
will be available soon.

1. State-Averaged Formalism

In state-averaged (SA) DSRG, the MK vacuum is an ensemble of electronic states, which are typically obtained by an
SA-CASSCF computation. For example, we want to study two states, Φ1 and Φ2, described qualitatively by a CASCI
with SA-CASSCF orbitals. The ensemble of states (assuming equal weights) is characterized by the density operator

𝜌 =
1

2
|Φ1⟩⟨Φ1|+

1

2
|Φ2⟩⟨Φ2|

Note that Φ1 and Φ2 are just two of the many states (say, 𝑛) in CASCI.

The bare Hamiltonian and cluster operators are normal ordered with respect to this ensemble, whose information is
embedded in the state-averaged densities. An effective Hamiltonian �̄� is then built by solving the DSRG cluster
amplitudes. In this way, the dynamical correlation is described for all the states lying in the ensemble. Here, the DSRG
solver and correlation levels remain the same to those of state-specific cases. For example, we use DSRG-MRPT3 to do
SA-DSRG-PT3.

Now we have many ways to proceed and obtain the excited states, two of which have been implemented.

• One approach is to diagonalize �̄� using Φ1 and Φ2. As such, the new states are just linear combinations of states
in the ensemble and the CI coefficients are then constrained to be combined using Φ1 and Φ2. We term this
approach constrained SA, with a letter “c” appended at the end of a method name (e.g., SA-DSRG-PT2c). and
in Forte we use the option SA_SUB to specify this SA variant.

• The other approach is to diagonalize �̄� using all configurations in CASCI, which allows all CI coefficients to
relax. This approach is the default SA-DSRG approach, which is also the default in Forte. The corresponding
option is SA_FULL.

For both approaches, one could iterate these two-step (DSRG + diagoanlization) procedure till convergence is reached.

3.4. Driven Similarity Renormalization Group 65

Forte, Release 0.2.3

Note: For SA-DSRG, a careful inspection of the output CI coefficients is usually necessary. This is because the
ordering of states may change after dynamical correlation is included. When that happens, a simple fix is to include
more states in the ensemble, which may reduce the accuracy yet usually OK if only a few low-lying states are of interest.

2. Multi-State, Extended Multi-State Formalisms

Warning: Not available at the moment.

Note: Only support at the PT2 level of theory.

In multi-state (MS) DSRG, we adopt the single-state parametrization where the effective Hamiltonian is built as

𝐻eff
𝑀𝑁 = ⟨Φ𝑀 |�̂�|Φ𝑁 ⟩+

1

2

[︁
⟨Φ𝑀 |𝑇 †

𝑀 �̂�|Φ𝑁 ⟩+ ⟨Φ𝑀 |�̂�𝑇𝑁 |Φ𝑁 ⟩
]︁
,

where 𝑇𝑀 is the state-specific cluster amplitudes for state 𝑀 , that is, we solve DSRG-PT2 amplitudes 𝑇𝑀 normal
ordered to |Φ𝑀 ⟩. The MS-DSRG-PT2 energies are then obtained by diagonalizing this effective Hamiltonian. However,
it is known this approach leaves wiggles on the potential energy surface (PES) near the strong coupling region of the
reference wave functions.

A simple way to cure these artificial wiggles is to use the extended MS (XMS) approach. In XMS DSRG, the reference
states Φ̃𝑀 are linear combinations of CASCI states Φ𝑀 such that the Fock matrix is diagonal. Specifically, the Fock
matrix is built according to

𝐹𝑀𝑁 = ⟨Φ𝑀 |𝐹 |Φ𝑁 ⟩,

where 𝐹 is the state-average Fock operator. Then in the mixed state basis, we have ⟨Φ̃𝑀 |𝐹 |Φ̃𝑁 ⟩ = 0, if 𝑀 ̸= 𝑁 . The
effective Hamiltonian is built similarly to that of MS-DSRG-PT2, except that Φ̃𝑀 is used.

3. Dynamically Weighted Multi-State Formalism

Warning: Not available at the moment.

Note: Only support at the PT2 level of theory.

As shown by the XMS approach, mixing states is able to remove the wiggles on the PES. Dynamically weighted MS
(DWMS) approach provides an alternative way to mix zeroth-order states. The idea of DWMS is closely related to
SA-DSRG. In DWMS, we choose an ensemble of zeroth-order reference states, where the weights are automatically
determined according to the energy separations between these reference states. Specifically, the weight for target state
𝑀 is given by

𝜔𝑀𝑁 (𝜁) =
𝑒−𝜁(𝐸

(0)
𝑀 −𝐸(0)

𝑁)2∑︀𝑛
𝑃=1 𝑒

−𝜁(𝐸(0)
𝑀 −𝐸(0)

𝑃)2
,

66 Chapter 3. HOWTOs

Forte, Release 0.2.3

where 𝐸(0)
𝑀 = ⟨Φ𝑀 |�̂�|Φ𝑀 ⟩ is the zeroth-order energy of state 𝑀 and 𝜁 is a parameter to be set by the user. Then we

follow the MS approach to form an effective Hamiltonian where the amplitudes are solved for the ensemble tuned to
that particular state.

For a given value of 𝑧𝑒𝑡𝑎, the weights of two reference states Φ𝑀 and Φ𝑁 will be equal if they are degenerate in energy.
On the other limit where they are energetically far apart, the ensemble used to determine 𝑇𝑀 mainly consists of Φ𝑀
with a little weight on Φ𝑁 , and vice versa.

For two non-degenerate states, by sending 𝜁 to zero, both states in the ensemble have equal weights (general for 𝑛
states), which is equivalent to the SA formalism. If we send 𝜁 to∞, then the ensemble becomes state-specific. Thus,
parameter 𝜁 can be understood as how drastic between the transition from MS to SA schemes.

Caution: It is not guaranteed that the DWMS energy (for one adiabatic state) lies in between the MS and SA
values. When DWMS energies go out of the bounds of MS and SA, a small 𝜁 value is preferable to avoid rather
drastic energy changes in a small geometric region.

4. Examples

A simple example is to compute the lowest two states of LiF molecule using SA-DSRG-PT2.

import forte

molecule {
0 1
Li
F 1 R
R = 10.000

units bohr
}

basis {
assign Li Li-cc-pvdz
assign F aug-cc-pvdz

[Li-cc-pvdz]
spherical

Li 0
S 8 1.00

1469.0000000 0.0007660
220.5000000 0.0058920
50.2600000 0.0296710
14.2400000 0.1091800
4.5810000 0.2827890
1.5800000 0.4531230
0.5640000 0.2747740
0.0734500 0.0097510

S 8 1.00
1469.0000000 -0.0001200
220.5000000 -0.0009230
50.2600000 -0.0046890
14.2400000 -0.0176820

(continues on next page)

3.4. Driven Similarity Renormalization Group 67

Forte, Release 0.2.3

(continued from previous page)

4.5810000 -0.0489020
1.5800000 -0.0960090
0.5640000 -0.1363800
0.0734500 0.5751020

S 1 1.00
0.0280500 1.0000000

P 3 1.00
1.5340000 0.0227840
0.2749000 0.1391070
0.0736200 0.5003750

P 1 1.00
0.0240300 1.0000000

D 1 1.00
0.1239000 1.0000000

}

set globals{
reference rhf
scf_type pk
maxiter 300
e_convergence 10
d_convergence 10
docc [4,0,1,1]
restricted_docc [3,0,1,1]
active [2,0,0,0]
mcscf_r_convergence 7
mcscf_e_convergence 10
mcscf_maxiter 250
mcscf_diis_start 25
num_roots 2
avg_states [0,1]

}

set forte{
active_space_solver cas
correlation_solver dsrg-mrpt2
frozen_docc [2,0,0,0]
restricted_docc [1,0,0,0]
active [3,0,2,2]
dsrg_s 0.5
avg_state [[0,1,2]]
dsrg_multi_state sa_full
calc_type sa

}

Emcscf, wfn = energy('casscf', return_wfn=True)
energy('forte',ref_wfn=wfn)

Here, we explicitly specify the cc-pVDZ basis set of Li since Psi4 uses seg-opt basis (at least at some time). For
simplicity, we do an SA-CASSCF(2,2) computation in Psi4 but the active space in Forte is CASCI(8e,7o), which
should be clearly stated in the publication if this kind of special procedure is used.

68 Chapter 3. HOWTOs

Forte, Release 0.2.3

To perform an SA-DSRG-PT2 computation, the following keywords should be specified (besides those already men-
tioned in the state-specific DSRG-MRPT2):

• CALC_TYPE: The type of computation should be set to state averaging, i.e., SA. Multi-state and dynamically
weighted computations should be set correspondingly.

• AVG_STATE: This specifies the states to be averaged, given in arrays of triplets [[A1, B1, C1], [A2, B2, C2], . . .].
Each triplet corresponds to the state irrep, state multiplicity, and the nubmer of states, in sequence. The number
of states are counted from the lowest energy one in the given symmetry.

• DSRG_MULTI_STATE: This options specifies the methods used in DSRG computations. By default, it will use
SA_FULL.

The output of this example will print out the CASCI(8e,7o) configurations

==> Root No. 0 <==

ba0 20 20 -0.6992227471
ab0 20 20 -0.6992227471
200 20 20 -0.1460769052

Total Energy: -106.772573855919561

==> Root No. 1 <==

200 20 20 0.9609078151
b0a 20 20 0.1530225853
a0b 20 20 0.1530225853
ba0 20 20 -0.1034194675
ab0 20 20 -0.1034194675

Total Energy: -106.735798144523812

Then the 1-, 2-, and 3-RDMs for each state are computed and then sent to orbital canonicalizer. The DSRG-PT2
computation will still print out the energy contributions, which now correspond to the corrections to the average of the
ensemble.

==> DSRG-MRPT2 Energy Summary <==

E0 (reference) = -106.754186000221665
<[F, T1]> = -0.000345301150943
<[F, T2]> = 0.000293904835970
<[V, T1]> = 0.000300892512596
<[V, T2]> (C_2)^4 = -0.246574892923286
<[V, T2]> C_4 (C_2)^2 HH = 0.000911300780649
<[V, T2]> C_4 (C_2)^2 PP = 0.002971830422787
<[V, T2]> C_4 (C_2)^2 PH = 0.010722949661906
<[V, T2]> C_6 C_2 = 0.000099208259233
<[V, T2]> = -0.231869603798710
DSRG-MRPT2 correlation energy = -0.231620107601087
DSRG-MRPT2 total energy = -106.985806107822754

Finally, a CASCI is performed using DSRG-PT2 dressed integrals.

3.4. Driven Similarity Renormalization Group 69

Forte, Release 0.2.3

==> Root No. 0 <==

200 20 20 0.8017660337
ba0 20 20 0.4169816393
ab0 20 20 0.4169816393

Total Energy: -106.990992362637314

==> Root No. 1 <==

200 20 20 -0.5846182713
ba0 20 20 0.5708699624
ab0 20 20 0.5708699624

Total Energy: -106.981903302649229

Here we observe the ordering of states changes by comparing the configurations. In fact, it is near the avoided crossing
region and we see the CI coefficients between these two states are very similar (comparing to the original CASCI
coefficients). An automatic way to correspond states before and after DSRG treatments for dynamical correlation is
not implemented. A simple approach is to compute the overlap, which should usually suffice.

At the end, we print the energy summary of the states of interest.

==> Energy Summary <==

Multi. Irrep. No. Energy

1 A1 0 -106.990992362637
1 A1 1 -106.981903302649

Tip: It is sometimes cumbersome to grab the energies of all the computed states from the output
file, especially when multiple reference relaxation steps are performed. Here, one could use the keyword
DSRG_DUMP_RELAXED_ENERGIES where a JSON file dsrg_relaxed_energies.json is created. In the
above example, the file will read

{
"0": {

"ENERGY ROOT 0 1A1": -106.7725738559195,
"ENERGY ROOT 1 1A1": -106.7357981445238

},
"1": {

"DSRG FIXED": -106.98580610782275,
"DSRG RELAXED": -106.98644783264328,
"ENERGY ROOT 0 1A1": -106.99099236263731,
"ENERGY ROOT 1 1A1": -106.98190330264923

}
}

The printing for SA-DSRG-PT2c (set DSRG_MULTI_STATE to SA_SUB) is slightly different from above. After the
DSRG-PT2 computation, we build the effective Hamiltonian using the original CASCI states.

70 Chapter 3. HOWTOs

Forte, Release 0.2.3

==> Building Effective Hamiltonian for Singlet A1 <==

Computing 1RDMs (0 Singlet A1 - 0 Singlet A1) ... Done. Timing 0.001090 s
Computing 2RDMs (0 Singlet A1 - 0 Singlet A1) ... Done. Timing 0.001884 s
Computing 1TrDMs (0 Singlet A1 - 1 Singlet A1) ... Done. Timing 0.001528 s
Computing 2TrDMs (0 Singlet A1 - 1 Singlet A1) ... Done. Timing 0.002151 s
Computing 1RDMs (1 Singlet A1 - 1 Singlet A1) ... Done. Timing 0.001114 s
Computing 2RDMs (1 Singlet A1 - 1 Singlet A1) ... Done. Timing 0.001757 s

==> Effective Hamiltonian for Singlet A1 <==

Heff Singlet A1 (Symmetry 0)
Irrep: 1 Size: 2 x 2

1 2

1 -106.98637816344888 0.00443421124030
2 0.00443421124030 -106.98523405219674

Eigen Vectors of Heff for Singlet A1 with eigenvalues

1 2

1 -0.7509824 -0.6603222
2 0.6603222 -0.7509824

-106.9902771-106.9813351

Here, we see a strong coupling between the two states at this geometry: The SA-DSRG-PT2c ground state is 0.75|Φ1⟩−
0.66|Φ2⟩.

5. Related Options

DSRG_MULTI_STATE
Algorithms to compute excited states.

• Type: string

• Options: SA_FULL, SA_SUB, MS, XMS

• Default: SA_FULL

DWMS_ZETA
Automatic Gaussian width cutoff for the density weights.

• Type: double

• Default: 0.0

Note: Add options when DWMS is re-enabled.

3.4. Driven Similarity Renormalization Group 71

Forte, Release 0.2.3

3.4.5 TODOs

0. Re-enable MS, XMS, and DWMS

These are disabled due to an infrastructure change.

1. DSRG-MRPT2 Analytic Energy Gradients

This is an ongoing project.

2. MR-DSRG(T) with Perturbative Triples

This is an ongoing project.

3.4.6 A Complete List of DSRG Teset Cases

Acronyms used in the following text:

• Integrals

DF: density fitting; DiskDF: density fitting (disk algorithm); CD: Cholesky decomposition;

• Reference Relaxation

U: unrelaxed; PR: partially relaxed; R: relaxed; FR: fully relaxed;

• Single-State / Multi-State

SS: state-specific; SA: state-averaged; SAc: state-averaged with constrained reference; MS: multi-state; XMS:
extended multi-state; DWMS: dynamically weighted multi-state;

• Theoretical Variants

QC: commutator truncated to doubly nested level (i.e., �̄� = �̂� + [�̂�, 𝐴] + 1
2 [[�̂�, 𝐴], 𝐴]); SQ: sequential trans-

formation; NIVO: non-interacting virtual orbital approximation;

• Run Time:

long: > 30 s to finish; Long: > 5 min to finish; LONG: > 20 min to finish;

1. DSRG-MRPT2 Test Cases

72 Chapter 3. HOWTOs

Forte, Release 0.2.3

Name Variant Molecule Notes
dsrg-mrpt2-1 SS, U BeH2 large 𝑠 value, user defined basis set
dsrg-mrpt2-2 SS, U HF
dsrg-mrpt2-3 SS, U H4 (rectangular)
dsrg-mrpt2-4 SS, U N2

dsrg-mrpt2-5 SS, U benzyne C6H4

dsrg-mrpt2-6 SS, PR N2

dsrg-mrpt2-7-casscf-
natorbs

SS, PR N2 CASSCF natural orbitals

dsrg-mrpt2-8-sa SA, SAc LiF lowest two singlet states, user defined ba-
sis set

dsrg-mrpt2-9-xms MS,
XMS

LiF lowest two singlet states

dsrg-mrpt2-10-CO SS, PR CO dipole moment (not linear response)
dsrg-mrpt2-11-C2H4 SA ethylene C2H4 lowest three singlet states
dsrg-mrpt2-12-localized-
actv

SA butadiene C4H6 long, localized active orbitals

dsrg-mrpt2-13 SS N2 and N atom size-consistency check
aci-dsrg-mrpt2-1 SS, U N2 ACI(𝜎 = 0)
aci-dsrg-mrpt2-2 SS, U H4 (rectangular) ACI(𝜎 = 0)
aci-dsrg-mrpt2-3 SS, PR H4 (rectangular) ACI(𝜎 = 0)
aci-dsrg-mrpt2-4 SS, U octatetraene

C8H10

DF, ACI(𝜎 = 0.001), ACI batching

aci-dsrg-mrpt2-5 SS, PR octatetraene
C8H10

long, DF, ACI(𝜎 = 0.001), ACI batching

3.4. Driven Similarity Renormalization Group 73

Forte, Release 0.2.3

2. DF/CD-DSRG-MRPT2 Test Cases

Name Variant Molecule Notes
cd-dsrg-mrpt2-1 SS, U BeH2 CD(𝜎 = 10−14)
cd-dsrg-mrpt2-2 SS, U HF CD(𝜎 = 10−14)
cd-dsrg-mrpt2-3 SS, U H4 (rectangular) CD(𝜎 = 10−14)
cd-dsrg-mrpt2-4 SS, U N2 CD(𝜎 = 10−12)
cd-dsrg-mrpt2-5 SS, U benzyne C6H4 CD(𝜎 = 10−11)
cd-dsrg-mrpt2-6 SS, PR BeH2 CD(𝜎 = 10−14)
cd-dsrg-mrpt2-7-sa SA LiF CD(𝜎 = 10−14)
df-dsrg-mrpt2-1 SS, U BeH2

df-dsrg-mrpt2-2 SS, U HF
df-dsrg-mrpt2-3 SS, U H4 (rectangular)
df-dsrg-mrpt2-4 SS, U N2

df-dsrg-mrpt2-5 SS, U benzyne C6H4

df-dsrg-mrpt2-6 SS, PR N2

df-dsrg-mrpt2-7-localized-actv SA butadiene C4H6 long, localized active orbitals
df-dsrg-mrpt2-threading1 SS, U benzyne C6H4

df-dsrg-mrpt2-threading2 SS, U benzyne C6H4

df-dsrg-mrpt2-threading4 SS, U benzyne C6H4

diskdf-dsrg-mrpt2-1 SS, U BeH2

diskdf-dsrg-mrpt2-2 SS, U HF
diskdf-dsrg-mrpt2-3 SS, U H4 (rectangular)
diskdf-dsrg-mrpt2-4 SS, PR N2

diskdf-dsrg-mrpt2-5 SS, U benzyne C6H4

diskdf-dsrg-mrpt2-threading1 SS, U benzyne C6H4

diskdf-dsrg-mrpt2-threading4 SS, U benzyne C6H4

df-aci-dsrg-mrpt2-1 SS, U benzyne C6H4 ACI(𝜎 = 0)
df-aci-dsrg-mrpt2-2 SS, U HF ACI(𝜎 = 0.0001)

3. DSRG-MRPT3 Test Cases

Name Variant Molecule Notes
dsrg-mrpt3-1 SS, PR HF
dsrg-mrpt3-2 SS, PR HF CD(𝜎 = 10−8)
dsrg-mrpt3-3 SS, PR N2 CD(𝜎 = 10−8), long, time printing
dsrg-mrpt3-4 SS, PR N2

dsrg-mrpt3-5 SA LiF CAS(2e,2o), default cc-pVDZ of Li is seg-opt
dsrg-mrpt3-6-sa SA LiF CAS(8e,7o), user defined cc-pVDZ for Li
dsrg-mrpt3-7-CO SS, PR CO dipole moment (not linear response)
dsrg-mrpt3-8-sa-C2H4 SA ethylene C2H4 long, lowest three singlet states
dsrg-mrpt3-9 SS, PR HF CD(𝜎 = 10−14), batching
aci-dsrg-mrpt3-1 SS, PR N2 ACI(𝜎 = 0)

74 Chapter 3. HOWTOs

Forte, Release 0.2.3

4. MR-DSRG Test Cases

Name Variant Molecule Notes
mrdsrg-pt2-1 SS, U BeH2 PT2
mrdsrg-pt2-2 SS, PR BeH2 PT2
mrdsrg-pt2-3 SS, FR BeH2 long, PT2
mrdsrg-pt2-4 SS, FR HF PT2
mrdsrg-pt2-5 SS, R HF long, PT2, DIIS, 0th-order Hamil-

tonian
mrdsrg-srgpt2-1 SS, U BeH2 Long, SRG_PT2
mrdsrg-srgpt2-2 SS, U BeH2 LONG, SRG_PT2, Dyall Hamilto-

nian
mrdsrg-ldsrg2-1 SS, U N2 long, read amplitudes
mrdsrg-ldsrg2-df-1 SS, R BeH2 CD, long
mrdsrg-ldsrg2-df-2 SS, R HF CD, long
mrdsrg-ldsrg2-df-3 SS, U H4 (rectangu-

lar)
CD, long

mrdsrg-ldsrg2-df-4 SS, PR H2 CD
mrdsrg-ldsrg2-df-seq-1 SS, PR, SQ BeH2 CD, Long
mrdsrg-ldsrg2-df-seq-2 SS, R, SQ HF CD, Long
mrdsrg-ldsrg2-df-seq-3 SS, U, SQ H4 (rectangu-

lar)
CD, long

mrdsrg-ldsrg2-df-seq-4 SS, FR, SQ H4 (rectangu-
lar)

CD, Long

mrdsrg-ldsrg2-df-nivo-1 SS, PR, NIVO BeH2 CD, long
mrdsrg-ldsrg2-df-nivo-2 SS, R, NIVO HF CD, long
mrdsrg-ldsrg2-df-nivo-3 SS, U, NIVO H4 (rectangu-

lar)
CD, long

mrdsrg-ldsrg2-df-seq-
nivo-1

SS, PR, SQ,
NIVO

BeH2 CD, long

mrdsrg-ldsrg2-df-seq-
nivo-2

SS, R, SQ,
NIVO

HF CD, Long

mrdsrg-ldsrg2-df-seq-
nivo-3

SS, U, SQ,
NIVO

H4 (rectangu-
lar)

CD, long

mrdsrg-ldsrg2-qc-1 SS, FR, QC HF long
mrdsrg-ldsrg2-qc-2 SS, U, QC HF long
mrdsrg-ldsrg2-qc-df-2 SS, U, QC HF CD, long

3.4. Driven Similarity Renormalization Group 75

Forte, Release 0.2.3

5. DWMS-DSRG-PT2 Test Cases

Add test cases when DWMS is back to life.

6. Spin-Adapted MR-DSRG Test Cases

Name Variants Molecule Notes
mrdsrg-spin-adapted-1 SS, U HF LDSRG(2) truncated to 2-nested commutator
mrdsrg-spin-adapted-2 SS, PR HF long, LDSRG(2), non-semicanonical orbitals
mrdsrg-spin-adapted-3 SS, R, SQ,

NIVO
HF long, CD, LDSRG(2)

mrdsrg-spin-adapted-4 SS, U N2 long, CD, LDSRG(2), non-semicanonical,
zero ccvv

mrdsrg-spin-adapted-5 SS, U N2 long, read/dump amplitudes
mrdsrg-spin-adapted-
pt2-1

SS, U HF CD

mrdsrg-spin-adapted-
pt2-2

SS, U HF CD, non-semicanonical orbitals, zero ccvv
source

mrdsrg-spin-adapted-
pt2-3

SS, PR p-
benzyne

DiskDF

mrdsrg-spin-adapted-
pt2-4

SS, R O2 triplet ground state, CASSCF(8e,6o)

mrdsrg-spin-adapted-
pt2-5

SA, R C2 CASSCF(8e,8o), zero 3 cumulant

mrdsrg-spin-adapted-
pt2-6

SA benzene Exotic state-average weights

mrdsrg-spin-adapted-
pt3-1

SS, PR HF CD

mrdsrg-spin-adapted-
pt3-2

SA ethylene lowest three singlet states

3.4.7 References

The seminal work of DSRG is given in:

• “A driven similarity renormalization group approach to quantum many-body problems”, F. A. Evangelista, J.
Chem. Phys. 141, 054109 (2014). (doi: 10.1063/1.4890660).

A general and pedagogical discussion of MR-DSRG is presented in:

• “Multireference Theories of Electron Correlation Based on the Driven Similarity Renormalization Group”, C. Li
and F. A. Evangelista, Annu. Rev. Phys. Chem. 70, 245-273 (2019). (doi: 10.1146/annurev-physchem-042018-
052416).

The theories of different DSRG correlation levels are discussed in the following articles:

DSRG-MRPT2 (without reference relaxation):

• “Multireference Driven Similarity Renormalization Group: A Second-Order Perturbative Anal-
ysis”, C. Li and F. A. Evangelista, J. Chem. Theory Compt. 11, 2097-2108 (2015). (doi:
10.1021/acs.jctc.5b00134).

DSRG-MRPT3 and variants of reference relaxations:

76 Chapter 3. HOWTOs

http://dx.doi.org/10.1063/1.4890660
http://dx.doi.org/10.1146/annurev-physchem-042018-052416
http://dx.doi.org/10.1146/annurev-physchem-042018-052416
http://dx.doi.org/10.1021/acs.jctc.5b00134

Forte, Release 0.2.3

• “Driven similarity renormalization group: Third-order multireference perturbation theory”, C. Li
and F. A. Evangelista, J. Chem. Phys. 146, 124132 (2017). (doi: 10.1063/1.4979016). Erratum:
148, 079902 (2018). (doi: 10.1063/1.5023904).

MR-LDSRG(2):

• “Towards numerically robust multireference theories: The driven similarity renormalization group
truncated to one- and two-body operators”, C. Li and F. A. Evangelista, J. Chem. Phys. 144, 164114
(2016). (doi: 10.1063/1.4947218). Erratum: 148, 079903 (2018). (doi: 10.1063/1.5023493).

The DSRG extensions for excited state are discussed in the following articles:

SA-DSRG framework and its PT2 and PT3 applications:

• “Driven similarity renormalization group for excited states: A state-averaged perturbation theory”,
C. Li and F. A. Evangelista, J. Chem. Phys. 148, 124106 (2018). (doi: 10.1063/1.5019793).

MS-DSRG and DWMS-DSRG:

• “Dynamically weighted multireference perturbation theory: Combining the advantages of multi-state
and state- averaged methods”, C. Li and F. A. Evangelista, J. Chem. Phys. 150, 144107 (2019). (doi:
10.1063/1.5088120).

The DSRG analytic energy gradients are described in the following series of papers:

Single reference DSRG-PT2:

• “Analytic gradients for the single-reference driven similarity renormalization group second-order
perturbation theory”, S. Wang, C. Li, and F. A. Evangelista, J. Chem. Phys. 151, 044118 (2019).
(doi: 10.1063/1.5100175).

The integral-factorized implementation of DSRG is firstly achieved in:

• “An integral-factorized implementation of the driven similarity renormalization group second-order multirefer-
ence perturbation theory”, K. P. Hannon, C. Li, and F. A. Evangelista, J. Chem. Phys. 144, 204111 (2016). (doi:
10.1063/1.4951684).

The sequential variant of MR-LDSRG(2) and NIVO approximation are described in:

• “Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Trans-
formation, Density Fitting, and the Noninteracting Virtual Orbital Approximation”, T. Zhang, C. Li, and F. A.
Evangelista, J. Chem. Theory Compt. 15, 4399-4414 (2019). (doi: 10.1021/acs.jctc.9b00353).

Combination between DSRG and adaptive configuration interaction with applications to acenes:

• “A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation
in Oligoacenes”, J. B. Schriber, K. P. Hannon, C. Li, and F. A. Evangelista, J. Chem. Theory Compt. 14, 6295-
6305 (2018). (doi: 10.1021/acs.jctc.8b00877).

Benchmark of state-specific unrelaxed DSRG-MRPT2 (tested 34 active orbitals):

• “A low-cost approach to electronic excitation energies based on the driven similarity renormalization group”,
C. Li, P. Verma, K. P. Hannon, and F. A. Evangelista, J. Chem. Phys. 147, 074107 (2017). (doi:
10.1063/1.4997480).

3.4. Driven Similarity Renormalization Group 77

http://dx.doi.org/10.1063/1.4979016
http://dx.doi.org/10.1063/1.5023904
http://dx.doi.org/10.1063/1.4947218
http://dx.doi.org/10.1063/1.5023493
http://dx.doi.org/10.1063/1.5019793
http://dx.doi.org/10.1063/1.5088120
http://dx.doi.org/10.1063/1.5100175
http://dx.doi.org/10.1063/1.4951684
http://dx.doi.org/10.1021/acs.jctc.9b00353
http://dx.doi.org/10.1021/acs.jctc.8b00877
http://dx.doi.org/10.1063/1.4997480

Forte, Release 0.2.3

3.5 Active Space Embedding Theory

3.5.1 Simple active space frozen-orbital embedding

This embedding procedure provides an automatic way to embed one fragment into an environment, by an active space
embedding theory that allows multireference method embedded in single-reference or multireference environment, for
example, DSRG-MRPT2-in-CASSCF.

The input file should at least include two fragment:

molecule {
0 1 # Fragment 1, system A
...
--
0 1 # Fragment 2, environment or bath B
...

symmetry c1 # Currently it is suggested to disable symmetry for embedding calculations
}

In the forte options, turn on embedding procedure by adding options to forte:

set forte{
embedding true
embedding_cutoff_method threshold # threshold/cum_threshold/num_of_orbitals
embedding_threshold 0.5 # threshold t

}

This is the minimum input required to run the embedding calculation. The embedding procedure will update the
wavefunction coefficients and the MOSpaceInfo before running general forte calculations.

Four examples are available in test cases. Note that the program will by default semi-canonicalize frozen and active
orbitals, if this is not intended, one can disable this semi-canonicalization with corresponding options.

EMBEDDING Options

EMBEDDING
Turn on/off embedding procedure.

• Type: bool

• Default: false

EMBEDDING_CUTOFF_METHOD
The choices of embedding cutoff methods. THRESHOLD: simple threshold CUM_THRESHOLD: cumulative thresh-
old NUM_OF_ORBITALS: fixed number of orbitals

• Type: string

• Options: THRESHOLD, CUM_THRESHOLD, NUM_OF_ORBITALS

• Default: THRESHOLD

EMBEDDING_THRESHOLD
The threshold 𝑡 of embedding cutoff. Do nothing when EMBEDDING_CUTOFF_METHOD is
NUM_OF_ORBITALS

78 Chapter 3. HOWTOs

Forte, Release 0.2.3

• Type: double

• Default: 0

EMBEDDING_REFERENCE
The reference wavefunction, do not need to specify unless using special active space treatment. Default is CASSCF
with an well-defined active space including occupied and virtual orbitals.

• Type: string

• Default: CASSCF

EMBEDDING_SEMICANONICALIZE_ACTIVE
Turn on/off the semi-canonicalization of active space.

• Type: bool

• Default: true

EMBEDDING_SEMICANONICALIZE_ACTIVE
Turn on/off the semi-canonicalization of frozen core and virtual space. This will create a set of well-defined frozen
orbitals.

• Type: bool

• Default: true

NUM_A_DOCC
The number of occupied orbitals fixed to system A, only function when EMBEDDING_CUTOFF_METHOD is
NUM_OF_ORBITALS.

• Type: int

• Default: 0

NUM_A_UOCC
The number of virtual orbitals fixed to system A, only function when EMBEDDING_CUTOFF_METHOD is
NUM_OF_ORBITALS.

• Type: int

• Default: 0

3.6 Atomic Valence Active Space (AVAS)

3.6.1 Overview

This AVAS procedure provides an automatic way to generate an active space for correlation computations by projecting
MOs to an AO subspace, computing and sorting the overlaps for a new set of rotated MOs and a suitable active space.

Given a projector 𝑃 , AVAS builds the projected overlap matrices for doubly occupied and virtual orbitals separately
from an restricted Hartree-Fock wave function

𝑆𝑖𝑗 = ⟨𝑖|𝑃 |𝑗⟩ =
∑︁
𝜇𝜈

𝐶𝜇𝑖𝑃𝜇𝜈𝐶𝜈𝑗 , 𝑖, 𝑗 ∈ {DOCC},

𝑆𝑎𝑏 = ⟨𝑎|𝑃 |𝑏⟩ =
∑︁
𝜇𝜈

𝐶𝜇𝑎𝑃𝜇𝜈𝐶𝜈𝑏, 𝑎, 𝑏 ∈ {UOCC},

3.6. Atomic Valence Active Space (AVAS) 79

Forte, Release 0.2.3

where the projector matrix is given by

𝑃𝜇𝜈 =
∑︁
𝑝𝑞

⟨𝜇|𝑝⟩(𝜌−1)𝑝𝑞⟨𝑞|𝜈⟩, 𝑝, 𝑞 ∈ {Target Valence Atomic Orbitals}.

The matrix 𝜌−1 is the inverse of target AO overlap matrix 𝜌𝑝𝑞 = ⟨𝑝|𝑞⟩.

Note: Target AOs are selected from the MINAO basis.

If the option AVAS_DIAGONALIZE is TRUE, AVAS will diagonalize matrices 𝑆𝑖𝑗 and 𝑆𝑎𝑏 and rotate orbitals separately
such that the Hartree-Fock energy is unaffected:

SU = U𝜎DOCC, 𝐶𝜇𝑖 =
∑︁
𝑗

𝐶𝜇𝑗𝑈𝑗𝑖,

S̄Ū = Ū𝜎UOCC, 𝐶𝜇𝑎 =
∑︁
𝑏

𝐶𝜇𝑏�̄�𝑏𝑎.

The two sets of eigenvalues are combined 𝜎 = 𝜎DOCC ⊕ 𝜎UOCC and subsequently sorted in descending order. If
AVAS_DIAGONALIZE is set to FALSE, the “eigenvalues” will be directly grabbed from the diagonal elements of the
projected overlap matrices and no orbital rotation is performed.

Depending on the selection scheme, part of the orbitals with nonzero eigenvalues are selected as active orbitals. We
then semi-canonicalize all four subsets of orbitals separately. The final orbitals are arranged such that those considered
as active lie in between the inactive occupied and inactive virtual orbitals.

Warning: The code does not support UHF reference at present. For ROHF reference, our implementation does
not touch any singly occupied orbitals, which are all considered as active orbitals and assumed in canonical form.

3.6.2 Input example

In this example, we use AVAS to find an active space for formaldehyde that spans the 2𝑝𝑥 orbitals of the C and O atoms,
followed by a CASCI computation.

import forte
molecule H2CO{
0 1
C -0.000000000000 -0.000000000006 -0.599542970149
O -0.000000000000 0.000000000001 0.599382404096
H -0.000000000000 -0.938817812172 -1.186989139808
H 0.000000000000 0.938817812225 -1.186989139839
noreorient # ask Psi4 to not reorient the xyz coordinate
}

set {
basis cc-pvdz
reference rhf
scf_type pk
e_convergence 12

}

set forte {
(continues on next page)

80 Chapter 3. HOWTOs

Forte, Release 0.2.3

(continued from previous page)

job_type none # no energy computation
subspace ["C(2px)","O(2px)"] # target AOs from 2px orbitals of C and O
avas true # turn on AVAS
avas_diagonalize true # diagonalize the projected overlaps
avas_sigma 1.0 # fraction of eigenvalues included as active

}
Ezero, wfn = energy('forte', return_wfn=True)

set forte {
job_type newdriver # compute some forte energy
active_space_solver fci # use FCI solver
print 1 # print level
restricted_docc [5,0,0,2] # from AVAS
active [0,0,3,0] # from AVAS

}
Ecasci = energy('forte', ref_wfn=wfn)

Note: The keyword noreorient in the molecule section is very important if certain orientations of orbitals are
selected in the subspace (e.g., 2𝑝𝑧 of C). Otherwise, the subspace orbital selection may end up the wrong direction.

The AVAS procedure outputs:

Sum of eigenvalues: 1.98526975

==> AVAS MOs Information <==

A1 A2 B1 B2

DOCC INACTIVE 5 0 0 2
DOCC ACTIVE 0 0 1 0
SOCC ACTIVE 0 0 0 0
UOCC ACTIVE 0 0 2 0
UOCC INACTIVE 13 3 4 8

RESTRICTED_DOCC 5 0 0 2
ACTIVE 0 0 3 0
RESTRICTED_UOCC 13 3 4 8

==> Atomic Valence MOs (Active Marked by *) <==

===============================
Irrep MO Occ. <phi|P|phi>

* B1 0 2 0.970513
* B1 1 0 0.992548
* B1 2 0 0.022209
===============================

The Sum of eigenvalues is the sum of traces of projected overlap matrices S and S̄. We see that AVAS generates

3.6. Atomic Valence Active Space (AVAS) 81

Forte, Release 0.2.3

three active orbitals of B1 symmetry. We then use this guess of active orbitals to compute the CASCI energy:

==> Root No. 0 <==

200 -0.98014601
020 0.18910986

Total Energy: -113.911667467206598

==> Energy Summary <==

Multi.(2ms) Irrep. No. Energy

1 (0) A1 0 -113.911667467207

Note: Currently, the procedure is not automated enough so that two Forte computations need to be carried out. First
perform an AVAS and check the output guess of active orbitals. Then put RESTRICTED_DOCC and ACTIVE in the input
for another round of Forte computation.

For more examples, see avas-1 to avas-6 in the tests/methods folder. In particular, avas-6 is a practical example
on ferrocene.

3.6.3 Defining the molecular plane for orbitals

Molecular systems with conjugated bonds are often arranged into planar geometries. For such systems, it often desir-
able to select an active space that includes orbitals perpendicular to the plane. Each orbital is a linear combination of
atomic p orbitals, which are also perpendicular to the plane. However, unlike the case of formaldehyde, where it easy
to select the appropriate and * orbitals, in the more general case a orbital is a linear combination of 2𝑝𝑥, 2𝑝𝑦 , and 2𝑝𝑧
orbitals. The approach described in the previous section is not flexible enough to treat general systems like molecules
containing multiple systems or systems that are not aligned with a specific molecular axis.

There are two ways to fix this problem. One is to reorient the molecule such that the molecular plane lying in yz plane.
However, this approach is not flexible enough to treat multiple systems in a molecule. The other approach is to use all
𝑝𝑥, 𝑝𝑦 , 𝑝𝑧 orbitals as basis, using which the p orbital perpendicular to the plane can be defined. To do this, we need to
specify two keywords: SUBSPACE and SUBSPACE_PI_PLANES. The option SUBSPACE_PI_PLANES takes a list of atoms
(3 or more) that form a plane, and in this case is used to define the plane. Note that this option uses the same syntax
as SUBSPACE, whereby indicating an element (e.g., H) includes all the hydrogen atoms in the list that defines the plane.
The option SUBSPACE, is used to select all the 2p orbitals, because neither of the three directions is perpendicular to
the plane. This leads to the following input section of AVAS:

set forte {
subspace ["C(2p)","O(2p)"] # must include all 2p orbitals!
subspace_pi_planes [["C","O","H"]] # only one plane, defined by all C, O and H atoms
avas true
avas_diagonalize true
avas_sigma 1.0

}

and the output is now identical to the very first example

82 Chapter 3. HOWTOs

Forte, Release 0.2.3

==> Atomic Valence MOs (Active Marked by *) <==

===============================
Irrep MO Occ. <phi|P|phi>

* A 0 2 0.970513
* A 8 0 0.992548
* A 9 0 0.022209
===============================

Some comments on the expressions of SUBSPACE_PI_PLANES are necessary. Possible expressions to define the planes
include:

- [['C', 'H', 'O']] # only one plane consisting all C, H, and O atoms of␣
→˓the molecule.
- [['C1-6'], ['N1-2', 'C9-11']] # plane 1 with the first six C atoms of the molecule,

plane 2 with C atoms #9, #10, and #11, and N atoms #1␣
→˓and #2.
- [['C1-4'], ['C1-2', 'C5-6']] # plane 1 with the first four C atoms of the molecule,

plane 2 with C atoms #1, #2, #5, and #6.
Two planes share C1 and C2!

This syntax follows the one used by SUBSPACE:

- ["C"] # all carbon atoms
- ["C","N"] # all carbon and nitrogen atoms
- ["C1"] # carbon atom #1
- ["C1-3"] # carbon atoms #1, #2, #3
- ["C(2p)"] # the 2p subset of all carbon atoms
- ["C(1s)","C(2s)"] # the 1s/2s subsets of all carbon atoms
- ["C1-3(2s)"] # the 2s subsets of carbon atoms #1, #2, #3
- ["Ce(4fzx2-zy2)"] # the 4f zxx-zyy orbital of all Ce atoms

Essentially, SUBSPACE_PI_PLANES defines a list of planes and the code attaches each atom of the plane with the plane
unit normal n = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧). A complete subset of atomic p orbitals (𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) are projected onto that vector so
that the target p orbital becomes |𝑝⟩ =

∑︀
𝑖∈{𝑥,𝑦,𝑧} 𝑛𝑖|𝑝𝑖⟩. This means we attach a coefficient to every subspace orbital,

where the coefficient of the 𝑝𝑖 orbital on the atom of the plane is 𝑛𝑖, while the coefficient for all other subspace AOs is
1.0. The projector is then modified as

𝑃𝜇𝜈 =
∑︁
𝑟′𝑠′

⟨𝜇|𝑟′⟩(𝜌−1)𝑟′𝑠′⟨𝑠′|𝜈⟩, 𝑟′, 𝑠′ ∈ {Target Valence Atomic Orbitals},

where |𝑟′⟩ =
∑︀
𝑟 𝐶𝑟𝑟′ |𝑟⟩ and |𝑟⟩ are the AOs from the MINAO basis set. The coefficient matrix 𝐶𝑟𝑟′ is given by

𝐶𝑟𝑟′ =

⎧⎪⎨⎪⎩
𝑛𝑖, 𝑟′ ∈ {𝑝 orbitals on plane atoms if planes are defined},
1.0, 𝑟′ ∈ {other AOs in the subspace chosen by the user},
0, otherwise.

Note: It is very important to include a complete set of p orbitals in SUBSPACE if planes are defined. Otherwise, the
code will follow the directions given by SUBSPACE.

Tip: The code is flexible enough to treat double active spaces (e.g., double or double d-shell). For example, the
double- active space of formaldehyde can be obtained via

3.6. Atomic Valence Active Space (AVAS) 83

Forte, Release 0.2.3

set forte {
minao_basis double-shell
subspace ["C(2p)","C(3p)","O(2p)","O(3p)"]
subspace_pi_planes [["C","O","H"]]
avas true
avas_diagonalize true
avas_cutoff 0.5

}

Here I prepare a basis called “double-shell.gbs”, which includes the 2p and 3p orbitals of C and O atoms. You can also
prepare your own MINAO basis by truncating the the cc-pVTZ or ANO-RCC-VTZP basis sets.

3.6.4 Systems with multiple systems

For a more realistic example, consider the following iron porphyrin related molecule:

By checking the geometry, we see that the molecule contains two systems, namely, porphyrin and imidazole. The
orbitals are perpendicular to the corresponding planes. However, the porphyrin is not a perfect plane and we assume
the orbitals are perpendicular to the averaged plane formed by the porphyrin backbone. The iron 3d orbitals may
interact with the orbitals of porphyrin and imidazole rings and the sulfur 3p orbitals. We would like to ask AVAS to
select these orbitals as active, which can be achieved by the following

set forte {
avas true
avas_diagonalize true
avas_cutoff 0.5

(continues on next page)

84 Chapter 3. HOWTOs

Forte, Release 0.2.3

(continued from previous page)

minao_basis cc-pvtz-minao
subspace ["Fe(3d)","C6-25(2p)","N(2p)","S(3p)","C1-3(2p)"]
subspace_pi_planes [["Fe","C6-25","N3-6"], ["N1-2","C1-3"]]

}

Here, the porphyrin plane is defined by the iron atom, carbon atoms #6 to #25, and nitrogen atoms #3 to #6. The
imidazole plane is defined by the first two nitrogen atoms and the first three carbon atoms. The atom ordering is
consistent with the one used in the molecule section of the input (see the figure). The AVAS output selects exactly 37
orbitals we wanted.

==> AVAS MOs Information <==

A

DOCC INACTIVE 106
DOCC ACTIVE 22
SOCC ACTIVE 0
UOCC ACTIVE 15
UOCC INACTIVE 462

RESTRICTED_DOCC 106
ACTIVE 37
RESTRICTED_UOCC 462

==> Atomic Valence MOs (Active Marked by *) <==

===============================
Irrep MO Occ. <phi|P|phi>

* A 0 2 0.999085
* A 1 2 0.998642
...
* A 19 2 0.974919
* A 20 2 0.855068
* A 21 2 0.747171

A 22 2 0.215276
A 23 2 0.175599

...
A 36 2 0.000408

* A 128 0 0.999163
* A 129 0 0.997849
...
* A 140 0 0.943277
* A 141 0 0.824388
* A 142 0 0.784721

A 143 0 0.252635
A 144 0 0.144740

...
A 164 0 0.000898

===============================

3.6. Atomic Valence Active Space (AVAS) 85

Forte, Release 0.2.3

The code is also flexible enough treat planes that share some atoms. Let’s assume atom A is shared by planes 𝑃1 and 𝑃2

with the plane unit normals n1 and n2, respectively. The positive direction of n𝑖 (𝑖 = 1, 2) is taken such that n𝑖 ·d ≥ 0,
where d is the vector from the centroid of the molecule to the centroid of the plane 𝑃𝑖. The vector attached to atom
A is then a normalized vector sum given by nA = (n1 + n2)/||n1 + n2||. Based on this feature, we may ask AVAS
to pick the active space for C20 fullerene (see test case avas-8). For C20 fullerene, there are 12 planes forming the
cage and we would like to make the target valence AOs pointing outwards the cage sphere. The planes can be specified
manually or figured out using the nearest and second nearest neighbors of an atom.

3.6.5 Options

AVAS
Turn on the AVAS procedure or not.

• Type: Boolean

• Default: False

AVAS_DIAGONALIZE
Diagonalize the projected overlap matrices or not.

• Type: Boolean

• Default: True

AVAS_EVALS_THRESHOLD
Threshold smaller than which is considered as zero for an eigenvalue of the projected overlap matrices.

• Type: double

• Default: 1.0e-6

AVAS_SIGMA
Cumulative threshold to the eigenvalues of the projected overlap matrices to control the output number of active
orbitals. Orbitals will be added to the active subset starting from that of the largest 𝜎 value and stopped when∑︀ACTIVE
𝑢 𝜎𝑢/

∑︀ALL
𝑝 𝜎𝑝 is larger than the threshold.

• Type: double

• Default: 0.98

AVAS_CUTOFF
The threshold greater than which to the eigenvalues of the projected overlap matrices will be considered as active
orbitals. If not equal to 1.0, it takes priority over the sigma threshold selection.

• Type: double

• Default: 1.0

AVAS_NUM_ACTIVE
The total number of orbitals considered as active for doubly occupied and virtual orbitals (singly occupied orbitals not
included). If not equal to 0, it will take priority over the sigma or cutoff selections.

• Type: int

• Default: 0

AVAS_NUM_ACTIVE_OCC
The number of doubly occupied orbitals considered as active. If not equal to 0, it will take priority over the selection
schemes based on sigma and cutoff selections and the total number of active orbitals.

86 Chapter 3. HOWTOs

Forte, Release 0.2.3

• Type: int

• Default: 0

AVAS_NUM_ACTIVE_VIR
The number of virtual orbitals considered as active. If not equal to 0, it will take priority over the selection schemes
based on sigma and cutoff selections and the total number of active orbitals.

• Type: int

• Default: 0

3.6.6 Citation Reference

Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals J. Chem. Theory Comput. 13,
4063-4078 (2017).

3.7 Plotting MOs

Forte includes a set of utilities for plotting molecular orbitals saved in the cube file format directly from a Jupyter
notebook. A good place to start is this: Tutorial_02.00_plotting_mos.ipynb.

3.7.1 Generating cube files

The forte.utils.psi4_cubeprop function offers a convenient way to generate cube files from the information
stored in a psi4 Wavefunction object:

import forte.utils
forte.utils.psi4_cubeprop(wfn,path='cubes',nocc=4,nvir=4)

By default this function plots the HOMO-2 to the LUMO+2 orbitals, but in this example we specifically indicate that
we want 4 occupied and 4 virtual orbitals. This function can also take a list of the orbitals to plot via the orbs option
and it can return a set of CubeFile objects:

cubes = forte.utils.psi4_cubeprop(wfn, path = '.', orbs = [3,4,5,6], load = True)

3.7.2 Reading, manipulating, and saving cube files

Cube files can be read from disk via the CubeFile class. To read a cube file instantiate a CubeFile object by passing
the file name:

cube = forte.CubeFile('cubes/Psi_a_15_15-A.cube')

From this object, we can plot the cube file or extract useful information:

number of atoms
print(f'cube.natoms() -> {cube.natoms()}')

number of grid points along each direction
print(f'cube.num() -> {cube.num()}')

3.7. Plotting MOs 87

https://pubs.acs.org/doi/10.1021/acs.jctc.7b00128
https://pubs.acs.org/doi/10.1021/acs.jctc.7b00128
https://github.com/evangelistalab/forte/tree/master/tutorials/Tutorial_02.00_plotting_mos.ipynb

Forte, Release 0.2.3

The CubeFile class supports three type of operations:

scale(double factor): scale all the values on the grid by factor
𝜑(r𝑖)← factor * 𝜑(r𝑖)

add(CubeFile cube): add to this cube file the grid values stored in cube
𝜑(r𝑖)← 𝜑(r𝑖) + 𝜓(r𝑖)

pointwise_product(CubeFile cube): multiply each point of this cube file with the values stored in cube
𝜑(r𝑖)← 𝜑(r𝑖) * 𝜓(r𝑖)

For example, we can compute the density of an orbital by taking the pointwise product with itself:

cube = forte.CubeFile('cubes/Psi_a_15_15-A.cube')
dens = forte.CubeFile(cube)
dens.pointwise_product(dens)

To write a CubeFile object to disk for later use just call the save function:

dens.save('cubes/dens.cube')

3.7.3 Plotting cube files

Forte includes a low-level 3D renderer based on pythreejs and a simple interface to this renderer, the CubeViewer
class. We can tell the CubeViewer class to look for cube files in a specific path (via the path option):

cv = forte.utils.CubeViewer(path='cubes')

Alternatively, we can pass a list of cube files to load (via the cubes options). Here we specify two files and we also
change the color scheme:

cv2 = forte.utils.CubeViewer(cubes=['cubes/Psi_a_13_13-A.cube','cubes/Psi_a_16_16-A.cube
→˓'],colorscheme='electron')

3.7.4 Generating cube files

The forte.utils.psi4_cubeprop function offers a convenient way to generate cube files from the information
stored in a psi4 Wavefunction object:

3.8 Forte Python API Tutorial (NEW)

Forte’s new python API allows the user to express a calculation as a computational graph. Nodes on this graph do one
of the following - Provide inputs - Take inputs from other nodes and perform a computational task

88 Chapter 3. HOWTOs

Forte, Release 0.2.3

3.8.1 Creating the input node

The starting point for a Forte computation is an input object (Input). The input can be created via a factory function
(forte.solvers.solver_factory)

from forte.solvers import solver_factory

define the molecular geometry (H2, r = 1 Å)
zmat = """
H
H 1 1.0
"""

create the input node using the zmat geometry and the cc-pVDZ basis set
input = solver_factory(molecule=zmat, basis='cc-pVDZ')

The object returned by solver_factory (input) is an input node that contains a MolecularModel attribute respon-
sible for generating the Hamiltonian of this molecule/basis set combination. The input object can now be passed to a
Solver node that will perform a computation.

3.8.2 Hartree–Fock theory

To run a Hartree–Fock (HF) computation on the molecule defined above the user has to do the following:

1. Specify the electronic state

2. Create a Hartree–Fock solver object

3. Call the run() function

Here is an example that shows the full input for a HF computation:

from forte.solvers import solver_factory, HF

xyz = """
H 0.0 0.0 0.0
H 0.0 0.0 1.0
"""
input = solver_factory(molecule=xyz, basis='cc-pVDZ')

1. singlet Ag state of H2 (neutral)
state = input.state(charge=0, multiplicity=1, sym='ag')

2. create the HF object
hf = HF(input, state=state)

3. run the computation
hf.run()

The output of this computation can be found in the output.dat file. However, the results of this computation are also
stored in the HF object. For example, the HF energy can be accessed via hf.value('hf energy').

3.8. Forte Python API Tutorial (NEW) 89

Forte, Release 0.2.3

3.8.3 FCI and CASCI

Forte implements several solvers that diagonalize the Hamiltonian in a (small) space of orbitals, including FCI, selected
CI methods, and generalized active space (GAS). To perform one of these computations just pass an object that can
provide molecular orbitals to an ActiveSpaceSolver object. For example, we can perform a CASCI computation on
the same molecule as above by passing the HF node to an ActiveSpaceSolver node

from forte.solvers import solver_factory, HF, ActiveSpaceSolver

xyz = """
H 0.0 0.0 0.0
H 0.0 0.0 1.0
"""
input = solver_factory(molecule=xyz, basis='cc-pVDZ')

state = input.state(charge=0, multiplicity=1, sym='ag')

create the HF object
hf = HF(input, state=state)

specify the active space
we pass an array that specifies the number of active MOs per irrep
We use Cotton ordering, so this selects one MO from irrep 0 (Ag) and one from irrep 5␣
→˓(B1u)
mo_spaces = input.mo_spaces(active=[1, 0, 0, 0, 0, 1, 0, 0])

initialize a FCI solver and pass the HF object, the target electronic state, and the␣
→˓MO space information
fci = ActiveSpaceSolver(hf, type='FCI', states=state, mo_spaces=mo_spaces)

call run() on the FCI node
fci.run()

The CASCI energy can be accessed via the value function on the FCI object. In this case it returns a vector containing
the energy of all the states computed:

fci.value('active space energy')[state] -> [-1.1083377195359851]

To compute two 1𝐴𝑔 states we can simply pass a dictionary that maps states to number of desired solutions

fci = ActiveSpaceSolver(hf, type='FCI', states={state : 2}, mo_spaces=mo_spaces)

The energy of the two 1𝐴𝑔 states can still be retrieved with the value function:

fci.value('active space energy')[state] -> [-1.1083377195359851, -0.2591786932627466]

90 Chapter 3. HOWTOs

CHAPTER

FOUR

PROGRAMMER’S MANUAL

4.1 Writing Forte’s documentation

4.1.1 Location and structure of Forte’s documentation

Forte uses sphinx to generate its documentation. The documentation is written in part in sphinx, with some of the
content generated from Jupyter notebooks. The documentation is contained in the directory docs, which has the
following structure:

docs
notebooks
source

source contains the restructured text files (rst) that are compiled by sphinx. The directory notebooks contains Jupyter
notebooks that are used to generate some of the rst files. Restructured text file prefixed with nb_ that live in source
are generated from jupyter notebooks contained in the notebooks directory.

Note that the location of these converted jupyter notebooks reflects the relative location in the notebooks direc-
tory. For example, the file docs/source/nb_00_overview.rst is generated from the file docs/notebooks/
nb_00_overview.ipynb.

4.1.2 Compiling the documentation

To compile the documentation on your local machine, from a terminal change to the docs folder and type

docs> make html

This command will run sphinx and generate the documentation in the folder docs/build/html. The documentation
main page can be accessed via web browser using the url docs/build/html/index.html

4.1.3 Contributing to the documentation

To modify a section of Forte’s documentation you should first identify which file to modify. If a rst file begins with
nb_, then you should edit the corresponding jupyter notebook located in docs/notebooks or one of its subdirectories.

If you modified notebook files, you can update the corresponding rst files using the update_rst.py script in the docs
directory:

docs> python update_rst.py

91

Forte, Release 0.2.3

Since Jupyter facilitates the editing and rendering of the documentation, it is recommended to do all edits of Jupyter
documents in Jupyter, and only at the end (for example, before a commit) to convert the content to rst files.

4.2 Psi4

4.2.1 Symmetry and the Dimension class

In Forte, the irreducible representations (irreps) of Abelian point groups are represented using a zero-based integer.
The Cotton ordering of irreps is used, which can be found here. This ordering is convenient because the direct product
of two irreps can be computed using the XOR operator. For example, consider ${C_2v} symmetry. if ha``=A1 and
``hb , then their direct product can be computed as:

// Assume C2v symmetry
// Cotton ordering: [A1, A2, B1, B2]
int ha = 1; // 1 = 01 = A2
int hb = 3; // 3 = 11 = B2
int hab = ha ^ hb; // 10 = 2 = B1

4.2.2 The Vector and Matrix classes

92 Chapter 4. Programmer’s Manual

http://www.psicode.org/psi4manual/master/psithonmol.html#symmetry

CHAPTER

FIVE

FORTE’S PYTHON API

5.1 Molecule

5.2 Basis set

5.3 Molecular model

5.4 Results

5.5 Solver class

5.6 Hartree-Fock solver

5.7 Callback handler

93

Forte, Release 0.2.3

94 Chapter 5. Forte’s Python API

CHAPTER

SIX

LIST OF FORTE OPTIONS

ACI_ADD_AIMED_DEGENERATE
Add degenerate determinants not included in the aimed selection

• Type: Boolean

• Default value: True

ACI_ADD_EXTERNAL_EXCITATIONS
Adds external single excitations to the final wave function

• Type: Boolean

• Default value: False

ACI_ADD_SINGLES
Adds all active single excitations to the final wave function

• Type: Boolean

• Default value: False

ACI_APPROXIMATE_RDM
Approximate the RDMs

• Type: Boolean

• Default value: False

ACI_AVERAGE_OFFSET
Offset for state averaging

• Type: Integer

• Default value: 0

ACI_BATCHED_SCREENING
Control batched screeing

• Type: Boolean

• Default value: False

ACI_CONVERGENCE
ACI Convergence threshold

• Type: Double

95

Forte, Release 0.2.3

• Default value: 0.000000

ACI_DIRECT_RDMS
Computes RDMs without coupling lists

• Type: Boolean

• Default value: False

ACI_ENFORCE_SPIN_COMPLETE
Enforce determinant spaces to be spin-complete

• Type: Boolean

• Default value: True

ACI_EXCITED_ALGORITHM
The excited state algorithm

• Type: String

• Default value: ROOT_ORTHOGONALIZE

ACI_EXTERNAL_EXCITATION_ORDER
Order of external excitations to add

• Type: String

• Default value: SINGLES

ACI_EXTERNAL_EXCITATION_TYPE
Type of external excitations to add

• Type: String

• Default value: ALL

ACI_EX_TYPE
Type of excited state to compute

• Type: String

• Default value: CONV

ACI_FIRST_ITER_ROOTS
Compute all roots on first iteration?

• Type: Boolean

• Default value: False

ACI_INITIAL_SPACE
The initial reference space

• Type: String

• Default value: CAS

ACI_LOW_MEM_SCREENING
Use low-memory screening algorithm

• Type: Boolean

96 Chapter 6. List of Forte options

Forte, Release 0.2.3

• Default value: False

ACI_MAX_CYCLE
Maximum number of cycles

• Type: Integer

• Default value: 20

ACI_MAX_MEM
Sets max memory for batching algorithm (MB)

• Type: Integer

• Default value: 1000

ACI_MAX_RDM
Order of RDM to compute

• Type: Integer

• Default value: 1

ACI_MAX_RDM
Order of RDM to compute

• Type: Integer

• Default value: 1

ACI_MAX_RDM
Order of RDM to compute

• Type: Integer

• Default value: 1

ACI_NBATCH
Number of batches in screening

• Type: Integer

• Default value: 1

ACI_NFROZEN_CORE
Number of orbitals to freeze for core excitations

• Type: Integer

• Default value: 0

ACI_NO
Computes ACI natural orbitals

• Type: Boolean

• Default value: False

ACI_NO_THRESHOLD
Threshold for active space prediction

• Type: Double

97

Forte, Release 0.2.3

• Default value: 0.020000

ACI_NROOT
Number of roots for ACI computation

• Type: Integer

• Default value: 1

ACI_N_AVERAGE
Number of roots to averag

• Type: Integer

• Default value: 1

ACI_PERTURB_SELECT
Type of energy selection

• Type: Boolean

• Default value: False

ACI_PQ_FUNCTION
Function for SA-ACI

• Type: String

• Default value: AVERAGE

ACI_PREITERATIONS
Number of iterations to run SA-ACI before SS-ACI

• Type: Integer

• Default value: 0

ACI_PRESCREEN_THRESHOLD
The SD space prescreening threshold

• Type: Double

• Default value: 0.000000

ACI_PRINT_NO
Print the natural orbitals

• Type: Boolean

• Default value: True

ACI_PRINT_REFS
Print the P space

• Type: Boolean

• Default value: False

ACI_PRINT_WEIGHTS
Print weights for active space prediction

• Type: Boolean

98 Chapter 6. List of Forte options

Forte, Release 0.2.3

• Default value: False

ACI_PROJECT_OUT_SPIN_CONTAMINANTS
Project out spin contaminants in Davidson-Liu’s algorithm

• Type: Boolean

• Default value: True

ACI_QUIET_MODE
Print during ACI procedure

• Type: Boolean

• Default value: False

ACI_REF_RELAX
Do reference relaxation in ACI

• Type: Boolean

• Default value: False

ACI_RELAX_SIGMA
Sigma for reference relaxation

• Type: Double

• Default value: 0.010000

ACI_ROOT
Root for single-state computations

• Type: Integer

• Default value: 0

ACI_ROOTS_PER_CORE
Number of roots to compute per frozen occupation

• Type: Integer

• Default value: 1

ACI_SAVE_FINAL_WFN
Print final wavefunction to file

• Type: Boolean

• Default value: False

ACI_SCALE_SIGMA
Scales sigma in batched algorithm

• Type: Double

• Default value: 0.500000

ACI_SELECT_TYPE
The energy selection criteria

• Type: String

99

Forte, Release 0.2.3

• Default value: AIMED_ENERGY

ACI_SIZE_CORRECTION
Perform size extensivity correction

• Type: String

• Default value:

ACI_SPIN_ANALYSIS
Do spin correlation analysis

• Type: Boolean

• Default value: False

ACI_SPIN_PROJECTION
Type of spin projection

• Type: Integer

• Default value: 0

ACI_SPIN_TOL
Tolerance for S^2 value

• Type: Double

• Default value: 0.020000

ACI_STREAMLINE_Q
Do streamlined algorithm

• Type: Boolean

• Default value: False

ACI_TEST_RDMS
Run test for the RDMs

• Type: Boolean

• Default value: False

ACTIVE_REF_TYPE
Initial guess for active space wave functions

• Type: String

• Default value: CAS

AO_DSRG_MRPT2
Do AO-DSRG-MRPT2 if true (not available)

• Type: Boolean

• Default value: False

AVAS_DIAGONALIZE
Allow the users to specifydiagonalization of Socc and SvirIt takes priority over thethreshold based selection.

• Type: Boolean

100 Chapter 6. List of Forte options

Forte, Release 0.2.3

• Default value: True

AVAS_NUM_ACTIVE
Allows the user to specify the total number of active orbitals. It takes priority over the threshold based selection.

• Type: Integer

• Default value: 0

AVAS_NUM_ACTIVE_OCC
Allows the user to specify the number of active occupied orbitals. It takes priority over the threshold based selection.

• Type: Integer

• Default value: 0

AVAS_NUM_ACTIVE_VIR
Allows the user to specify the number of active occupied orbitals. It takes priority over the threshold based selection.

• Type: Integer

• Default value: 0

AVAS_SIGMA
Threshold that controls the size of the active space

• Type: Double

• Default value: 0.980000

CCVV_ALGORITHM
Algorithm to compute the CCVV term in DSRG-MRPT2 (only used in three-dsrg-mrpt2 code)

• Type: String

• Default value: FLY_AMBIT

• Allowed values: CORE, FLY_AMBIT, FLY_LOOP, BATCH_CORE, BATCH_VIRTUAL,
BATCH_CORE_GA, BATCH_VIRTUAL_GA, BATCH_VIRTUAL_MPI, BATCH_CORE_MPI,
BATCH_CORE_REP, BATCH_VIRTUAL_REP

CCVV_BATCH_NUMBER
Batches for CCVV_ALGORITHM

• Type: Integer

• Default value: -1

CCVV_SOURCE
Special treatment for the CCVV term in DSRG-MRPT2 (used in three-dsrg-mrpt2 code)

• Type: String

• Default value: NORMAL

• Allowed values: ZERO, NORMAL

CHOLESKY_TOLERANCE
The tolerance for cholesky integrals

• Type: Double

• Default value: 0.000001

101

Forte, Release 0.2.3

CINO
Do a CINO computation?

• Type: Boolean

• Default value: False

CINO_AUTO
Allow the users to choosewhether pass frozen_doccactice_docc and restricted_doccor not

• Type: Boolean

• Default value: False

CINO_NROOT
The number of roots computed

• Type: Integer

• Default value: 1

CINO_ROOTS_PER_IRREP
The number of excited states per irreducible representation

• Type: Array

• Default value: []

CINO_THRESHOLD
The fraction of NOs to include in the active space

• Type: Double

• Default value: 0.990000

CINO_TYPE
The type of wave function.

• Type: String

• Default value: CIS

• Allowed values: CIS, CISD

CORR_LEVEL
Correlation level of MR-DSRG (used in mrdsrg code, LDSRG2_P3 and QDSRG2_P3 not implemented)

• Type: String

• Default value: PT2

• Allowed values: PT2, PT3, LDSRG2, LDSRG2_QC, LSRG2, SRG_PT2, QDSRG2, LDSRG2_P3, QDSRG2_P3

DL_GUESS_SIZE
Set the initial guess space size for DL solver

• Type: Integer

• Default value: 100

DSRGPT
Renormalize (if true) the integrals (only used in toy code mcsrgpt2)

102 Chapter 6. List of Forte options

Forte, Release 0.2.3

• Type: Boolean

• Default value: True

DSRG_DIPOLE
Compute (if true) DSRG dipole moments

• Type: Boolean

• Default value: False

DSRG_HBAR_SEQ
Evaluate H_bar sequentially if true

• Type: Boolean

• Default value: False

DSRG_MAXITER
Max iterations for MR-DSRG amplitudes update

• Type: Integer

• Default value: 50

DSRG_MRPT2_DEBUG
Excssive printing for three-dsrg-mrpt2

• Type: Boolean

• Default value: False

DSRG_MULTI_STATE
Multi-state DSRG options (MS and XMS recouple states after single-state computations)

• Type: String

• Default value: SA_FULL

• Allowed values: SA_FULL, SA_SUB, MS, XMS

DSRG_OMIT_V3
Omit blocks with >= 3 virtual indices if true

• Type: Boolean

• Default value: False

DSRG_TRANS_TYPE
DSRG transformation type

• Type: String

• Default value: UNITARY

• Allowed values: UNITARY, CC

DWMS_ALGORITHM
DWMS algorithms

• Type: String

• Default value: DWMS-0

103

Forte, Release 0.2.3

• Allowed values: DWMS-0, DWMS-1, DWMS-AVG0, DWMS-AVG1

DWMS_ZETA
Gaussian width cutoff for the density weights

• Type: Double

• Default value: 0.000000

ESNOS
Compute external single natural orbitals

• Type: Boolean

• Default value: False

ESNO_MAX_SIZE
Number of external orbitals to correlate

• Type: Integer

• Default value: 0

FCIMO_ACTV_TYPE
The active space type

• Type: String

• Default value: COMPLETE

• Allowed values: COMPLETE, CIS, CISD, DOCI

FCIMO_CISD_NOHF
Ground state: HF; Excited states: no HF determinant in CISD space

• Type: Boolean

• Default value: True

FCIMO_IAO_ANALYSIS
Intrinsic atomic orbital analysis

• Type: Boolean

• Default value: False

FCIMO_IPEA
Generate IP/EA CIS/CISD space

• Type: String

• Default value: NONE

• Allowed values: NONE, IP, EA

FCIMO_LOCALIZE_ACTV
Localize active orbitals before computation

• Type: Boolean

• Default value: False

104 Chapter 6. List of Forte options

Forte, Release 0.2.3

FCIMO_PRINT_CIVEC
The printing threshold for CI vectors

• Type: Double

• Default value: 0.050000

FCI_MAXITER
Maximum number of iterations for FCI code

• Type: Integer

• Default value: 30

FCI_MAX_RDM
The number of trial guess vectors to generate per root

• Type: Integer

• Default value: 1

FCI_NROOT
The number of roots computed

• Type: Integer

• Default value: 1

FCI_NTRIAL_PER_ROOT
The number of trial guess vectors to generate per root

• Type: Integer

• Default value: 10

FCI_PRINT_NO
Print the NO from the rdm of FCI

• Type: Boolean

• Default value: False

FCI_ROOT
The root selected for state-specific computations

• Type: Integer

• Default value: 0

FCI_TEST_RDMS
Test the FCI reduced density matrices?

• Type: Boolean

• Default value: False

FORM_HBAR3
Form 3-body Hbar (only used in dsrg-mrpt2 with SA_SUB for testing)

• Type: Boolean

• Default value: False

105

Forte, Release 0.2.3

FORM_MBAR3
Form 3-body mbar (only used in dsrg-mrpt2 for testing)

• Type: Boolean

• Default value: False

GAMMA
The reference space selection threshold

• Type: Double

• Default value: 1.000000

H0TH
Zeroth-order Hamiltonian of DSRG-MRPT (used in mrdsrg code)

• Type: String

• Default value: FDIAG

• Allowed values: FDIAG, FFULL, FDIAG_VACTV, FDIAG_VDIAG

INTEGRAL_SCREENING
The screening for JK builds and DF libraries

• Type: Double

• Default value: 0.000000

INTERNAL_AMP
Include internal amplitudes for VCIS/VCISD-DSRG

• Type: String

• Default value: NONE

• Allowed values: NONE, SINGLES_DOUBLES, SINGLES, DOUBLES

INTERNAL_AMP_SELECT
Excitation types considered when internal amplitudes are included

• Type: String

• Default value: AUTO

• Allowed values: AUTO, ALL, OOVV

INTRUDER_TAMP
Threshold for amplitudes considered as intruders for warning

• Type: Double

• Default value: 0.100000

INT_TYPE
The integral type

• Type: String

• Default value: CONVENTIONAL

• Allowed values: CONVENTIONAL, DF, CHOLESKY, DISKDF, DISTDF, ALL, OWNINTEGRALS

106 Chapter 6. List of Forte options

Forte, Release 0.2.3

ISA_B
Intruder state avoidance parameter when use ISA to form amplitudes (only used in toy code mcsrgpt2)

• Type: Double

• Default value: 0.020000

JOB_TYPE
Specify the job type

• Type: String

• Default value: NONE

• Allowed values: NONE, ACI, PCI, CAS, DMRG, SR-DSRG, SR-DSRG-ACI, SR-DSRG-PCI, TENSORSRG,
TENSORSRG-CI, DSRG-MRPT2, DSRG-MRPT3, MR-DSRG-PT2, THREE-DSRG-MRPT2, SOMRDSRG,
MRDSRG, MRDSRG_SO, CASSCF, ACTIVE-DSRGPT2, DWMS-DSRGPT2, DSRG_MRPT, TASKS, CC,
NOJOB, DOCUMENTATION

MAXITER_RELAX_REF
Max macro iterations for DSRG reference relaxation

• Type: Integer

• Default value: 15

MINAO_BASIS
The basis used to define an orbital subspace

• Type: String

• Default value: STO-3G

MRCINO
Do a MRCINO computation?

• Type: Boolean

• Default value: False

MRCINO_AUTO
Allow the users to choosewhether pass frozen_doccactice_docc and restricted_doccor not

• Type: Boolean

• Default value: False

MRCINO_NROOT
The number of roots computed

• Type: Integer

• Default value: 1

MRCINO_ROOTS_PER_IRREP
The number of excited states per irreducible representation

• Type: Array

• Default value: []

107

Forte, Release 0.2.3

MRCINO_THRESHOLD
The fraction of NOs to include in the active space

• Type: Double

• Default value: 0.990000

MRCINO_TYPE
The type of wave function.

• Type: String

• Default value: CIS

• Allowed values: CIS, CISD

MRPT2
Compute full PT2 energy

• Type: Boolean

• Default value: False

MS
Projection of spin onto the z axis

• Type: Double

• Default value: 0.000000

NTAMP
Number of amplitudes printed in the summary

• Type: Integer

• Default value: 15

N_GUESS_VEC
Number of guess vectors for Sparse CI solver

• Type: Integer

• Default value: 10

PCI_ADAPTIVE_BETA
Use an adaptive time step?

• Type: Boolean

• Default value: False

PCI_CHEBYSHEV_ORDER
The order of Chebyshev truncation

• Type: Integer

• Default value: 5

PCI_COLINEAR_THRESHOLD
The minimum norm of orthogonal vector

• Type: Double

108 Chapter 6. List of Forte options

Forte, Release 0.2.3

• Default value: 0.000001

PCI_DL_COLLAPSE_PER_ROOT
The number of trial vector to retain after Davidson-Liu collapsing

• Type: Integer

• Default value: 2

PCI_DL_SUBSPACE_PER_ROOT
The maxim number of trial Davidson-Liu vectors

• Type: Integer

• Default value: 8

PCI_DYNAMIC_PRESCREENING
Use dynamic prescreening

• Type: Boolean

• Default value: False

PCI_ENERGY_ESTIMATE_FREQ
Iterations in between variational estimation of the energy

• Type: Integer

• Default value: 1

PCI_ENERGY_ESTIMATE_THRESHOLD
The threshold with which we estimate the variational energy. Note that the final energy is always estimated exactly.

• Type: Double

• Default value: 0.000001

PCI_EVAR_MAX_ERROR
The max allowed error for variational energy

• Type: Double

• Default value: 0.000000

PCI_E_CONVERGENCE
The energy convergence criterion

• Type: Double

• Default value: 0.000000

PCI_FAST_EVAR
Use a fast (sparse) estimate of the energy

• Type: Boolean

• Default value: False

PCI_FUNCTIONAL
The functional for determinant coupling importance evaluation

• Type: String

109

Forte, Release 0.2.3

• Default value: MAX

• Allowed values: MAX, SUM, SQUARE, SQRT, SPECIFY-ORDER

PCI_FUNCTIONAL_ORDER
The functional order of PCI_FUNCTIONAL is SPECIFY-ORDER

• Type: Double

• Default value: 1.000000

PCI_GENERATOR
The propagation algorithm

• Type: String

• Default value: WALL-CHEBYSHEV

• Allowed values: LINEAR, QUADRATIC, CUBIC, QUARTIC, POWER, TROTTER, OLSEN, DAVIDSON,
MITRUSHENKOV, EXP-CHEBYSHEV, WALL-CHEBYSHEV, CHEBYSHEV, LANCZOS, DL

PCI_GUESS_SPAWNING_THRESHOLD
The determinant importance threshold

• Type: Double

• Default value: -1.000000

PCI_INITIATOR_APPROX
Use initiator approximation

• Type: Boolean

• Default value: False

PCI_INITIATOR_APPROX_FACTOR
The initiator approximation factor

• Type: Double

• Default value: 1.000000

PCI_KRYLOV_ORDER
The order of Krylov truncation

• Type: Integer

• Default value: 5

PCI_MAXBETA
The maximum value of beta

• Type: Double

• Default value: 1000.000000

PCI_MAX_DAVIDSON_ITER
The maximum value of Davidson generator iteration

• Type: Integer

• Default value: 12

110 Chapter 6. List of Forte options

Forte, Release 0.2.3

PCI_MAX_GUESS_SIZE
The maximum number of determinants used to form the guess wave function

• Type: Double

• Default value: 10000.000000

PCI_NROOT
The number of roots computed

• Type: Integer

• Default value: 1

PCI_PERTURB_ANALYSIS
Do result perturbation analysis

• Type: Boolean

• Default value: False

PCI_POST_DIAGONALIZE
Do a post diagonalization?

• Type: Boolean

• Default value: False

PCI_PRINT_FULL_WAVEFUNCTION
Print full wavefunction when finish

• Type: Boolean

• Default value: False

PCI_REFERENCE_SPAWNING
Do spawning according to reference

• Type: Boolean

• Default value: False

PCI_SCHWARZ_PRESCREENING
Use schwarz prescreening

• Type: Boolean

• Default value: False

PCI_SIMPLE_PRESCREENING
Prescreen the spawning of excitations

• Type: Boolean

• Default value: False

PCI_SPAWNING_THRESHOLD
The determinant importance threshold

• Type: Double

• Default value: 0.001000

111

Forte, Release 0.2.3

PCI_STOP_HIGHER_NEW_LOW
Stop iteration when higher new low detected

• Type: Boolean

• Default value: False

PCI_SYMM_APPROX_H
Use Symmetric Approximate Hamiltonian

• Type: Boolean

• Default value: False

PCI_TAU
The time step in imaginary time (a.u.)

• Type: Double

• Default value: 1.000000

PCI_USE_INTER_NORM
Use intermediate normalization

• Type: Boolean

• Default value: False

PCI_USE_SHIFT
Use a shift in the exponential

• Type: Boolean

• Default value: False

PCI_VAR_ESTIMATE
Estimate variational energy during calculation

• Type: Boolean

• Default value: False

PI_ACTIVE_SPACE
Active space type

• Type: Boolean

• Default value: False

PRINT_1BODY_EVALS
Print eigenvalues of 1-body effective H

• Type: Boolean

• Default value: False

PRINT_DENOM2
Print (if true) renormalized denominators in DSRG-MRPT2

• Type: Boolean

• Default value: False

112 Chapter 6. List of Forte options

Forte, Release 0.2.3

PRINT_IAOS
Print IAOs

• Type: Boolean

• Default value: True

PRINT_INTS
Print the one- and two-electron integrals?

• Type: Boolean

• Default value: False

PRINT_TIME_PROFILE
Print detailed timings in dsrg-mrpt3

• Type: Boolean

• Default value: False

PT2_MAX_MEM
Maximum size of the determinant hash (GB)

• Type: Double

• Default value: 1.000000

RELAX_REF
Relax the reference for MR-DSRG (used in dsrg-mrpt2/3, mrdsrg)

• Type: String

• Default value: NONE

• Allowed values: NONE, ONCE, TWICE, ITERATE

R_CONVERGENCE
Convergence criteria for amplitudes

• Type: Double

• Default value: 0.000001

SAVE_FINAL_WFN
Save the final wavefunction to a file

• Type: Boolean

• Default value: False

SIGMA
The energy selection threshold

• Type: Double

• Default value: 0.010000

SMART_DSRG_S
Automatic adjust the flow parameter according to denominators

• Type: String

113

Forte, Release 0.2.3

• Default value: DSRG_S

• Allowed values: DSRG_S, MIN_DELTA1, MAX_DELTA1, DAVG_MIN_DELTA1, DAVG_MAX_DELTA1

SOURCE
Source operator used in DSRG (AMP, EMP2, LAMP, LEMP2 only available in toy code mcsrgpt2)

• Type: String

• Default value: STANDARD

• Allowed values: STANDARD, LABS, DYSON, AMP, EMP2, LAMP, LEMP2

SPIN_BASIS
Basis for spin analysis

• Type: String

• Default value: LOCAL

SPIN_MAT_TO_FILE
Save spin correlation matrix to file

• Type: Boolean

• Default value: False

SPIN_PROJECT_FULL
Project solution in full diagonalization algorithm

• Type: Boolean

• Default value: False

SUBSPACE
A list of orbital subspaces

• Type: Array

• Default value: []

T1_AMP
The way of forming T1 amplitudes (used in toy code mcsrgpt2)

• Type: String

• Default value: DSRG

• Allowed values: DSRG, SRG, ZERO

TAYLOR_THRESHOLD
Taylor expansion threshold for small denominator

• Type: Integer

• Default value: 3

THREEPDC_ALGORITHM
Algorithm for evaluating 3-body cumulants in three-dsrg-mrpt2

• Type: String

• Default value: CORE

114 Chapter 6. List of Forte options

Forte, Release 0.2.3

• Allowed values: CORE, BATCH

THREE_MRPT2_TIMINGS
Detailed printing (if true) in three-dsrg-mrpt2

• Type: Boolean

• Default value: False

T_ALGORITHM
The way of forming amplitudes (DSRG_NOSEMI, SELEC, ISA only available in toy code mcsrgpt2)

• Type: String

• Default value: DSRG

• Allowed values: DSRG, DSRG_NOSEMI, SELEC, ISA

UNPAIRED_DENSITY
Compute unpaired electron density

• Type: Boolean

• Default value: False

115

	Overview
	Capabilities
	Dependencies

	Tutorials
	Compiling and running Forte
	Download and compilation of Forte
	Download Forte
	1. Compilation via setup.py (recommended)
	2. Compilation via CMake
	Setting up the PYTHONPATH
	CMake script

	Advanced compilation options
	Number of threads used to compile Forte
	Add configuration and build options
	Maximum number of orbitals in the ``Determinant`` class
	Enabling code coverage

	Compilation via setup.py (recommended)
	Compilation via CMake
	Advanced compilation options

	Running Forte computations
	Running a FCI computation using the plugin interface
	Running a FCI computation using the python API
	Passing options in Forte: psi4 interface vs. dictionaries (new)
	Test cases and Jupyter Tutorials

	Specifying a wave function in Forte
	Charge and spin multiplicity
	Specifying the z component of spin (MS)
	Point group symmetry
	Definition of orbital spaces
	Orbital space specification
	Partial specification of orbital spaces and space priority
	Occupation numbers of GAS wave functions

	Specifying calculations of multiple states
	Requesting multiple solutions of a given spin and symmetry
	Requesting multiple solutions of different spin and symmetry
	Multistate GAS calculations

	Examples of advanced Forte computations
	Computing one or more FCI solutions of a given symmetry
	State-averaged CASSCF with states of different symmetry
	Using different mean-field guesses in CASSCF computations
	Guess with a different multiplicity
	Guess with different charge and multiplicity
	Guess based on DFT orbitals

	Selecting two-electron integral types
	Conventional integrals
	Density Fitting (DF) and Cholesky Decomposition (CD)
	Disk-based Density Fitting (DiskDF)
	Integrals from a FCIDUMP file
	Integral Selection Keywords

	Reading integrals in a spin orbital basis
	Preparing the orbitals via the utils.psi4_scf helper function
	Preparing the integral object
	Preparing list of doubly occupied orbitals
	Preparing the core blocks of the Hamiltonian
	Evaluating the energy expression

	HOWTOs
	Full configuration interaction
	Running the test cases

	ACI: Adaptive Configuration Interaction
	Theory
	A Few Practical Notes
	A First Example
	Computing Excited States with ACI
	ACI Options
	Basic Options
	Expert Options

	MCSCF: Multi-Configuration Self-Consistent Field
	Theory
	Implementation
	Input Example
	Options
	Basic Options
	Expert Options
	CPSCF Options

	Driven Similarity Renormalization Group
	Basics of DSRG
	1. Overview of DSRG Theory
	2. Input Examples
	3. General DSRG Options

	Theoretical Variants and Technical Details
	1. Reference Relaxation
	2. Orbital Rotations
	3. Sequential Transformation
	4. Non-Interacting Virtual Orbital Approximation
	5. Zeroth-order Hamiltonian of DSRG-MRPT2 in MRDSRG Class
	6. Restart iterative MRDSRG from a previous computation
	7. Examples
	8. Related Options

	Density Fitted (DF) and Cholesky Decomposition (CD) Implementations
	1. Theory
	2. Limitations
	3. Examples
	4. Related Options

	MR-DSRG Approaches for Excited States
	1. State-Averaged Formalism
	2. Multi-State, Extended Multi-State Formalisms
	3. Dynamically Weighted Multi-State Formalism
	4. Examples
	5. Related Options

	TODOs
	0. Re-enable MS, XMS, and DWMS
	1. DSRG-MRPT2 Analytic Energy Gradients
	2. MR-DSRG(T) with Perturbative Triples

	A Complete List of DSRG Teset Cases
	1. DSRG-MRPT2 Test Cases
	2. DF/CD-DSRG-MRPT2 Test Cases
	3. DSRG-MRPT3 Test Cases
	4. MR-DSRG Test Cases
	5. DWMS-DSRG-PT2 Test Cases
	6. Spin-Adapted MR-DSRG Test Cases

	References

	Active Space Embedding Theory
	Simple active space frozen-orbital embedding
	EMBEDDING Options

	Atomic Valence Active Space (AVAS)
	Overview
	Input example
	Defining the molecular plane for π orbitals
	Systems with multiple π systems
	Options
	Citation Reference

	Plotting MOs
	Generating cube files
	Reading, manipulating, and saving cube files
	Plotting cube files
	Generating cube files

	Forte Python API Tutorial (NEW)
	Creating the input node
	Hartree–Fock theory
	FCI and CASCI

	Programmer’s Manual
	Writing Forte’s documentation
	Location and structure of Forte’s documentation
	Compiling the documentation
	Contributing to the documentation

	Psi4
	Symmetry and the Dimension class
	The Vector and Matrix classes

	Forte’s Python API
	Molecule
	Basis set
	Molecular model
	Results
	Solver class
	Hartree-Fock solver
	Callback handler

	List of Forte options

